Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 3, Pages 468–482
DOI: https://doi.org/10.1070/IM9048
(Mi im9048)
 

This article is cited in 5 scientific papers (total in 5 papers)

Explicit minimizers of some non-local anisotropic energies: a short proof

J. E. Mateuab, M. G. Morac, L. Rondid, L. Scardiae, J. Verderaab

a Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
b Barcelona Graduate School of Mathematics, Barcelona, Catalonia, Spain
c Dipartimento di Matematica, Università di Pavia, Italy
d Dipartimento di Matematica, Università di Milano, Italy
e Department of Mathematics, Heriot-Watt University, Edinburgh, United Kingdom
References:
Abstract: In this paper we consider non-local energies defined on probability measures in the plane, given by a convolution interaction term plus a quadratic confinement. The interaction kernel is $-\log|z|+\alpha x^2/|z|^2$, $z=x+iy$, with $-1<\alpha<1$. This kernel is anisotropic except for the Coulomb case $\alpha=0$. We present a short compact proof of the known surprising fact that the unique minimizer of the energy is the normalized characteristic function of the domain enclosed by an ellipse with horizontal semi-axis $\sqrt{1-\alpha}$ and vertical semi-axis $\sqrt{1+\alpha}$. Letting $\alpha \to 1^-$, we find that the semicircle law on the vertical axis is the unique minimizer of the corresponding energy, a result related to interacting dislocations, and previously obtained by some of the authors. We devote the first sections of this paper to presenting some well-known background material in the simplest way possible, so that readers unfamiliar with the subject find the proofs accessible.
Keywords: non-local interaction, potential theory, maximum principle, Plemelj formula.
Funding agency Grant number
Generalitat de Catalunya 2017-SGR-395
Ministerio de Economía y Competitividad de España MTM2016-75390
Istituto Nazionale di Alta Matematica "Francesco Severi" 2018
2019
Engineering and Physical Sciences Research Council EP/N035631/1
JM and JV are supported by 2017-SGR-395 (Generalitat de Catalunya) and MTM2016-75390 (Mineco). MGM acknowledges support by the Università di Pavia through the 2017 Blue Sky Research Project “Plasticity at different scales: micro to macro” and by GNAMPA–INdAM. LR is partly supported by GNAMPA–INdAM through projects 2018 and 2019. LS acknowledges support by EPSRC Grant EP/N035631/1.
Received: 31.03.2020
Revised: 10.08.2020
Bibliographic databases:
Document Type: Article
UDC: 517.4+517.5
MSC: Primary 31A15; Secondary 49K20
Language: English
Original paper language: Russian
Citation: J. E. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “Explicit minimizers of some non-local anisotropic energies: a short proof”, Izv. Math., 85:3 (2021), 468–482
Citation in format AMSBIB
\Bibitem{MatMorRon21}
\by J.~E.~Mateu, M.~G.~Mora, L.~Rondi, L.~Scardia, J.~Verdera
\paper Explicit minimizers of some non-local anisotropic energies: a~short proof
\jour Izv. Math.
\yr 2021
\vol 85
\issue 3
\pages 468--482
\mathnet{http://mi.mathnet.ru//eng/im9048}
\crossref{https://doi.org/10.1070/IM9048}
\zmath{https://zbmath.org/?q=an:1469.31006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..468M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671432800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110772507}
Linking options:
  • https://www.mathnet.ru/eng/im9048
  • https://doi.org/10.1070/IM9048
  • https://www.mathnet.ru/eng/im/v85/i3/p138
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:324
    Russian version PDF:53
    English version PDF:42
    Russian version HTML:129
    References:37
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024