Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 3, Pages 518–528
DOI: https://doi.org/10.1070/IM9046
(Mi im9046)
 

On the classification of $3$-dimensional spherical Sasakian manifolds

D. Sykesa, G. Schmalza, V. V. Ezhovbc

a University of New England, School of Science and Technology, Australia
b Flinders University, College of Science and Engineering, Australia
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In this article we regard spherical hypersurfaces in $\mathbb{C}^2$ with a fixed Reeb vector field as $3$-dimensional Sasakian manifolds. We establish a correspondence between three different sets of parameters, namely, those arising from representing the Reeb vector field as an automorphism of the Heisenberg sphere, those used in Stanton's description of rigid spheres, and those arising from the rigid normal forms. We also describe geometrically the moduli space for rigid spheres and provide a geometric distinction between Stanton hypersurfaces and those found in [1]. Finally, we determine the Sasakian automorphism groups of rigid spheres and detect the homogeneous Sasakian manifolds among them.
Keywords: geometry of Sasakian manifolds, Reeb field, Stanton surfaces.
Received: 31.03.2020
Revised: 19.08.2020
Bibliographic databases:
Document Type: Article
UDC: 514.7+517.5
MSC: 32V05
Language: English
Original paper language: Russian
Citation: D. Sykes, G. Schmalz, V. V. Ezhov, “On the classification of $3$-dimensional spherical Sasakian manifolds”, Izv. Math., 85:3 (2021), 518–528
Citation in format AMSBIB
\Bibitem{SykSchEzh21}
\by D.~Sykes, G.~Schmalz, V.~V.~Ezhov
\paper On the classification of $3$-dimensional spherical Sasakian manifolds
\jour Izv. Math.
\yr 2021
\vol 85
\issue 3
\pages 518--528
\mathnet{http://mi.mathnet.ru//eng/im9046}
\crossref{https://doi.org/10.1070/IM9046}
\zmath{https://zbmath.org/?q=an:1471.32061}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..518S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671433400001}
\elib{https://elibrary.ru/item.asp?id=46925904}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110625903}
Linking options:
  • https://www.mathnet.ru/eng/im9046
  • https://doi.org/10.1070/IM9046
  • https://www.mathnet.ru/eng/im/v85/i3/p191
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:228
    Russian version PDF:30
    English version PDF:32
    Russian version HTML:98
    References:32
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024