Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 5, Pages 932–952
DOI: https://doi.org/10.1070/IM9044
(Mi im9044)
 

This article is cited in 3 scientific papers (total in 3 papers)

Convergence to stationary non-equilibrium states for Klein–Gordon equations

T. V. Dudnikova

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
References:
Abstract: We consider Klein–Gordon equations in $\mathbb{R}^d$, $d\geqslant2$, with constant or variable coefficients and study the Cauchy problem with random initial data. We investigate the distribution $\mu_t$ of a random solution at moments of time $t\in\mathbb{R}$. We prove the convergence of correlation functions of the measure $\mu_t$ to a limit as $t\to\infty$. The explicit formulae for the limiting correlation functions and the energy current density (in mean) are obtained in terms of the initial covariance. Furthermore, we prove the weak convergence of $\mu_t$ to a limiting measure as $t\to\infty$. We apply these results to the case when the initial random function has the Gibbs distribution with different temperatures in some infinite “parts” of the space. In this case, we find states in which the limiting energy current density does not vanish. Thus, for the model being studied, we construct a new class of stationary non-equilibrium states.
Keywords: Klein–Gordon equations, Cauchy problem, random initial data, weak convergence of measures, Gibbs measures, energy current density, non-equilibrium state.
Received: 29.03.2020
Revised: 30.07.2020
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: T. V. Dudnikova, “Convergence to stationary non-equilibrium states for Klein–Gordon equations”, Izv. Math., 85:5 (2021), 932–952
Citation in format AMSBIB
\Bibitem{Dud21}
\by T.~V.~Dudnikova
\paper Convergence to stationary non-equilibrium states for Klein--Gordon equations
\jour Izv. Math.
\yr 2021
\vol 85
\issue 5
\pages 932--952
\mathnet{http://mi.mathnet.ru//eng/im9044}
\crossref{https://doi.org/10.1070/IM9044}
\zmath{https://zbmath.org/?q=an:1518.35090}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..932D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000714743000001}
\elib{https://elibrary.ru/item.asp?id=47532646}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120346971}
Linking options:
  • https://www.mathnet.ru/eng/im9044
  • https://doi.org/10.1070/IM9044
  • https://www.mathnet.ru/eng/im/v85/i5/p110
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:279
    Russian version PDF:38
    English version PDF:22
    Russian version HTML:124
    References:43
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024