|
This article is cited in 2 scientific papers (total in 2 papers)
Approximation in measure: the Dirichlet problem, universality and the Riemann hypothesis
J. Falcóa, P. M. Gauthierb a Departamento de Análisis Matemático, Universidad de Valencia, Burjasot (Valencia), Spain
b Département de mathématiques et de statistique, Université de Montréal, Montréal, Québec, Canada
Abstract:
We use approximation in measure to solve an asymptotic Dirichlet problem on arbitrary open sets and to show that many functions, including the Riemann zeta-function, are universal in measure. Connections with the Riemann hypothesis are suggested.
Keywords:
harmonic approximation in measure, harmonic, holomorphic, Dirichlet problem, Riemann zeta-function, universality.
Received: 13.03.2020 Revised: 12.06.2020
Citation:
J. Falcó, P. M. Gauthier, “Approximation in measure: the Dirichlet problem, universality and the Riemann hypothesis”, Izv. Math., 85:3 (2021), 547–561
Linking options:
https://www.mathnet.ru/eng/im9033https://doi.org/10.1070/IM9033 https://www.mathnet.ru/eng/im/v85/i3/p222
|
Statistics & downloads: |
Abstract page: | 267 | Russian version PDF: | 66 | English version PDF: | 42 | Russian version HTML: | 105 | References: | 47 | First page: | 9 |
|