Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 2, Pages 177–227
DOI: https://doi.org/10.1070/IM9002
(Mi im9002)
 

This article is cited in 5 scientific papers (total in 5 papers)

On a class of Anosov diffeomorphisms on the infinite-dimensional torus

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P.G. Demidov Yaroslavl State University
b Lomonosov Moscow State University
References:
Abstract: We study a quite natural class of diffeomorphisms $G$ on $\mathbb{T}^{\infty}$, where $\mathbb{T}^{\infty}$ is the infinite-dimensional torus (the direct product of countably many circles endowed with the topology of uniform coordinatewise convergence). The diffeomorphisms under consideration can be represented as the sums of a linear hyperbolic map and a periodic additional term. We find some constructive sufficient conditions, which imply that any $G$ in our class is hyperbolic, that is, an Anosov diffeomorphism on $\mathbb{T}^{\infty}$. Moreover, under these conditions we prove the following properties standard in the hyperbolic theory: the existence of stable and unstable invariant foliations, the topological conjugacy to a linear hyperbolic automorphism of the torus and the structural stability of $G$.
Keywords: diffeomorphism, hyperbolicity, infinite-dimensional torus, invariant foliations, topological conjugacy, structural stability.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-10055
This paper was written with the support of RFBR (project no. 18-29-10055).
Received: 25.12.2019
Revised: 09.08.2020
Bibliographic databases:
Document Type: Article
UDC: 517.926
MSC: 37D20
Language: English
Original paper language: Russian
Citation: S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On a class of Anosov diffeomorphisms on the infinite-dimensional torus”, Izv. Math., 85:2 (2021), 177–227
Citation in format AMSBIB
\Bibitem{GlyKolRoz21}
\by S.~D.~Glyzin, A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper On a~class of Anosov diffeomorphisms on the infinite-dimensional torus
\jour Izv. Math.
\yr 2021
\vol 85
\issue 2
\pages 177--227
\mathnet{http://mi.mathnet.ru//eng/im9002}
\crossref{https://doi.org/10.1070/IM9002}
\zmath{https://zbmath.org/?q=an:1469.37021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..177G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000701444000001}
\elib{https://elibrary.ru/item.asp?id=46071961}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105050944}
Linking options:
  • https://www.mathnet.ru/eng/im9002
  • https://doi.org/10.1070/IM9002
  • https://www.mathnet.ru/eng/im/v85/i2/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:393
    Russian version PDF:113
    English version PDF:43
    Russian version HTML:124
    References:44
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024