Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 1, Pages 92–110
DOI: https://doi.org/10.1070/IM8989
(Mi im8989)
 

This article is cited in 2 scientific papers (total in 2 papers)

Interior estimates for solutions of linear elliptic inequalities

V. S. Klimov

P.G. Demidov Yaroslavl State University
References:
Abstract: We study the wedge of solutions of the inequality $A(u) \geqslant 0$, where $A$ is a linear elliptic operator of order $2m$ acting on functions \linebreak of $n$ variables. We establish interior estimates of the form $\|u; W_p^{2m-1}(\omega)\| \leqslant C(\omega,\Omega) \|u;L(\Omega)\|$ for the elements of this wedge, where $\omega$ is a compact subdomain of $\Omega$, $W_p^{2 m-1}(\omega)$ is the Sobolev space, $p (n-1)<n$, $L(\Omega)$ is the Lebesgue space of integrable functions, and the constant $C(\omega,\Omega)$ is independent of $u$.
Keywords: wedge, function, norm, elliptic inequality, Banach space.
Received: 13.11.2019
Bibliographic databases:
Document Type: Article
UDC: 517.956.222
MSC: 35R45, 35J30, 31C05
Language: English
Original paper language: Russian
Citation: V. S. Klimov, “Interior estimates for solutions of linear elliptic inequalities”, Izv. Math., 85:1 (2021), 92–110
Citation in format AMSBIB
\Bibitem{Kli21}
\by V.~S.~Klimov
\paper Interior estimates for solutions of linear elliptic inequalities
\jour Izv. Math.
\yr 2021
\vol 85
\issue 1
\pages 92--110
\mathnet{http://mi.mathnet.ru//eng/im8989}
\crossref{https://doi.org/10.1070/IM8989}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223887}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85...92K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000620163400001}
\elib{https://elibrary.ru/item.asp?id=46749269}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101665046}
Linking options:
  • https://www.mathnet.ru/eng/im8989
  • https://doi.org/10.1070/IM8989
  • https://www.mathnet.ru/eng/im/v85/i1/p98
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:336
    Russian version PDF:48
    English version PDF:27
    Russian version HTML:136
    References:45
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024