Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 2, Pages 228–240
DOI: https://doi.org/10.1070/IM8985
(Mi im8985)
 

This article is cited in 4 scientific papers (total in 4 papers)

General Fourier coefficients and convergence almost everywhere

L. D. Gogoladze, G. Cagareishvili

Tbilisi Ivane Javakhishvili State University
References:
Abstract: We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system $(\varphi_n)$ in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men'shov–Rademacher theorem. We also prove a theorem saying that every system $(\varphi_n)$ contains a subsystem $(\varphi_{n_k})$ with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].
Keywords: orthonormal system, Fourier coefficients, functions of bounded variation, Banach space.
Received: 05.11.2019
Revised: 25.04.2020
Bibliographic databases:
Document Type: Article
UDC: 517.521
MSC: 42A16
Language: English
Original paper language: Russian
Citation: L. D. Gogoladze, G. Cagareishvili, “General Fourier coefficients and convergence almost everywhere”, Izv. Math., 85:2 (2021), 228–240
Citation in format AMSBIB
\Bibitem{GogCag21}
\by L.~D.~Gogoladze, G.~Cagareishvili
\paper General Fourier coefficients and convergence almost everywhere
\jour Izv. Math.
\yr 2021
\vol 85
\issue 2
\pages 228--240
\mathnet{http://mi.mathnet.ru//eng/im8985}
\crossref{https://doi.org/10.1070/IM8985}
\zmath{https://zbmath.org/?q=an:1464.42002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..228G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000701438200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105099819}
Linking options:
  • https://www.mathnet.ru/eng/im8985
  • https://doi.org/10.1070/IM8985
  • https://www.mathnet.ru/eng/im/v85/i2/p60
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:326
    Russian version PDF:63
    English version PDF:27
    Russian version HTML:104
    References:48
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024