Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 4, Pages 780–795
DOI: https://doi.org/10.1070/IM8982
(Mi im8982)
 

This article is cited in 9 scientific papers (total in 9 papers)

Proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing a field

I. A. Panin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Let $R$ be a regular local ring containing a field. Let $\mathbf{G}$ be a reductive group scheme over $R$. We prove that a principal $\mathbf{G}$-bundle over $R$ is trivial if it is trivial over the field of fractions of $R$. In other words, if $K$ is the field of fractions of $R$, then the map
$$ H^1_{\mathrm{et}}(R,\mathbf{G})\to H^1_{\mathrm{et}}(K,\mathbf{G}) $$
of the non-Abelian cohomology pointed sets induced by the inclusion of $R$ in $K$ has trivial kernel. This result was proved in [1] for regular local rings $R$ containing an infinite field.
Keywords: reductive group schemes, principal bundles, Grothendieck–Serre conjecture.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00513
This paper was written with the support of the Russian Foundation for Basic Research (grant no. 19-01-00513).
Received: 18.10.2019
Revised: 31.01.2020
Bibliographic databases:
Document Type: Article
UDC: 512.74+512.723
MSC: 14L10, 20G10, 20G35
Language: English
Original paper language: Russian
Citation: I. A. Panin, “Proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing a field”, Izv. Math., 84:4 (2020), 780–795
Citation in format AMSBIB
\Bibitem{Pan20}
\by I.~A.~Panin
\paper Proof of~the Grothendieck--Serre conjecture on principal bundles over regular local rings containing a~field
\jour Izv. Math.
\yr 2020
\vol 84
\issue 4
\pages 780--795
\mathnet{http://mi.mathnet.ru//eng/im8982}
\crossref{https://doi.org/10.1070/IM8982}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133391}
\zmath{https://zbmath.org/?q=an:1458.14024}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..780P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000568335600001}
\elib{https://elibrary.ru/item.asp?id=45244723}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092220958}
Linking options:
  • https://www.mathnet.ru/eng/im8982
  • https://doi.org/10.1070/IM8982
  • https://www.mathnet.ru/eng/im/v84/i4/p169
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024