Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 6, Pages 1056–1104
DOI: https://doi.org/10.1070/IM8974
(Mi im8974)
 

This article is cited in 4 scientific papers (total in 4 papers)

Geometric estimates of solutions of quasilinear elliptic inequalities

A. A. Kon'kov

Lomonosov Moscow State University
References:
Abstract: Suppose that $p>1$ and $\alpha$ are real numbers with $p-1 \leqslant \alpha \leqslant p$. Let $\Omega$ be a non-empty open subset of $\mathbb{R}^n$, $n \geqslant 2$. We consider the inequality
$$ \operatorname{div} A (x, D u)+b (x) |D u|^\alpha\geqslant 0, $$
where $D=(\partial/\partial x_1, \partial/\partial x_2, \dots, \partial/\partial x_n)$ is the gradient operator, $A\colon \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ and $b\colon \Omega \to [0, \infty)$ are certain functions and
$$ C_1|\xi|^p\leqslant\xi A(x, \xi),\quad |A (x, \xi)|\leqslant C_2|\xi|^{p-1},\qquad C_1, C_2=\mathrm{const}>0, \quad p>1, $$
for almost all $x \in \Omega$ and all $\xi \in \mathbb{R}^n$. We obtain estimates for solutions of this inequality using the geometry of $\Omega$. In particular, these estimates yield regularity conditions for boundary points.
Keywords: non-linear operators, elliptic inequalities, boundary regularity conditions.
Received: 01.10.2019
Bibliographic databases:
Document Type: Article
UDC: 517.91
Language: English
Original paper language: Russian
Citation: A. A. Kon'kov, “Geometric estimates of solutions of quasilinear elliptic inequalities”, Izv. Math., 84:6 (2020), 1056–1104
Citation in format AMSBIB
\Bibitem{Kon20}
\by A.~A.~Kon'kov
\paper Geometric estimates of~solutions of~quasilinear elliptic inequalities
\jour Izv. Math.
\yr 2020
\vol 84
\issue 6
\pages 1056--1104
\mathnet{http://mi.mathnet.ru//eng/im8974}
\crossref{https://doi.org/10.1070/IM8974}
\zmath{https://zbmath.org/?q=an:1459.35191}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84.1056K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000605285100001}
\elib{https://elibrary.ru/item.asp?id=45018511}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099069837}
Linking options:
  • https://www.mathnet.ru/eng/im8974
  • https://doi.org/10.1070/IM8974
  • https://www.mathnet.ru/eng/im/v84/i6/p23
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:281
    Russian version PDF:45
    English version PDF:26
    References:36
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024