|
This article is cited in 4 scientific papers (total in 4 papers)
Geometric estimates of solutions of quasilinear elliptic inequalities
A. A. Kon'kov Lomonosov Moscow State University
Abstract:
Suppose that $p>1$ and $\alpha$ are real numbers with $p-1 \leqslant \alpha \leqslant p$. Let $\Omega$ be a non-empty
open subset of $\mathbb{R}^n$, $n \geqslant 2$. We consider the inequality
$$
\operatorname{div} A (x, D u)+b (x) |D u|^\alpha\geqslant 0,
$$
where $D=(\partial/\partial x_1, \partial/\partial x_2, \dots, \partial/\partial x_n)$ is the gradient operator,
$A\colon \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ and $b\colon \Omega \to [0, \infty)$ are certain functions and
$$
C_1|\xi|^p\leqslant\xi A(x, \xi),\quad |A (x, \xi)|\leqslant C_2|\xi|^{p-1},\qquad C_1, C_2=\mathrm{const}>0, \quad p>1,
$$
for almost all $x \in \Omega$ and all $\xi \in \mathbb{R}^n$. We obtain estimates for solutions of this inequality using
the geometry of $\Omega$. In particular, these estimates yield regularity conditions for boundary points.
Keywords:
non-linear operators, elliptic inequalities, boundary regularity conditions.
Received: 01.10.2019
Citation:
A. A. Kon'kov, “Geometric estimates of solutions of quasilinear elliptic inequalities”, Izv. Math., 84:6 (2020), 1056–1104
Linking options:
https://www.mathnet.ru/eng/im8974https://doi.org/10.1070/IM8974 https://www.mathnet.ru/eng/im/v84/i6/p23
|
Statistics & downloads: |
Abstract page: | 281 | Russian version PDF: | 45 | English version PDF: | 26 | References: | 36 | First page: | 8 |
|