Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 6, Pages 1161–1191
DOI: https://doi.org/10.1070/IM8970
(Mi im8970)
 

On the group of spheromorphisms of a homogeneous non-locally finite tree

Yu. A. Neretinabcd

a Wolfgang Pauli Institute, Faculty of Mathematics, University of Vienna, Vienna, Austria
b State Scientific Center of the Russian Federation - Institute for Theoretical and Experimental Physics, Moscow
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
d Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
References:
Abstract: We consider a tree $\mathbb{T}$ all whose vertices have countable valency. Its boundary is the Baire space $\mathbb{B}\simeq\mathbb{N}^\mathbb{N}$ and the set of irrational numbers $\mathbb{R}\setminus\mathbb{Q}$ is identified with $\mathbb{B}$ by continued fraction expansions. Removing $k$ edges from $\mathbb{T}$, we get a forest consisting of copies of $\mathbb{T}$. A spheromorphism (or hierarchomorphism) of $\mathbb{T}$ is an isomorphism of two such subforests regarded as a transformation of $\mathbb{T}$ or $\mathbb{B}$. We denote the group of all spheromorphisms by $\operatorname{Hier}(\mathbb{T})$. We show that the correspondence $\mathbb{R}\setminus \mathbb{Q}\simeq \mathbb{B}$ sends the Thompson group realized by piecewise $\mathrm{PSL}_2(\mathbb{Z})$-transformations to a subgroup of $\operatorname{Hier}(\mathbb{T})$. We construct some unitary representations of $\operatorname{Hier}(\mathbb{T})$, show that the group $\operatorname{Aut}(\mathbb{T})$ of automorphisms is spherical in $\operatorname{Hier}(\mathbb{T})$ and describe the train (enveloping category) of $\operatorname{Hier}(\mathbb{T})$.
Keywords: Thompson group, continued fraction, Baire space, representation of categories, Bruhat–Tits tree.
Funding agency Grant number
Austrian Science Fund P28421
P31591
The research was supported by the grants FWF, Projects P28421, P31591.
Received: 23.09.2019
Revised: 22.01.2020
Bibliographic databases:
Document Type: Article
UDC: 512.546.4+515.122.4
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “On the group of spheromorphisms of a homogeneous non-locally finite tree”, Izv. Math., 84:6 (2020), 1161–1191
Citation in format AMSBIB
\Bibitem{Ner20}
\by Yu.~A.~Neretin
\paper On the group of~spheromorphisms of a~homogeneous non-locally finite tree
\jour Izv. Math.
\yr 2020
\vol 84
\issue 6
\pages 1161--1191
\mathnet{http://mi.mathnet.ru//eng/im8970}
\crossref{https://doi.org/10.1070/IM8970}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181037}
\zmath{https://zbmath.org/?q=an:1498.20065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000613174900001}
\elib{https://elibrary.ru/item.asp?id=44976006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100052320}
Linking options:
  • https://www.mathnet.ru/eng/im8970
  • https://doi.org/10.1070/IM8970
  • https://www.mathnet.ru/eng/im/v84/i6/p131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:358
    Russian version PDF:45
    English version PDF:26
    References:46
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024