Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 4, Pages 705–744
DOI: https://doi.org/10.1070/IM8954
(Mi im8954)
 

This article is cited in 4 scientific papers (total in 4 papers)

On critical exponents for weak solutions of the Cauchy problem for a non-linear equation of composite type

M. O. Korpusovab, A. K. Matveevaa

a Faculty of Physics, Lomonosov Moscow State University
b Peoples' Friendship University of Russia, Moscow
References:
Abstract: We consider the Cauchy problem for a model partial differential equation of third order with non-linearity of the form $|u|^q$, where $u=u(x,t)$ for $x\in\mathbb{R}^3$ and $t\geqslant 0$. We construct a fundamental solution for the linear part of the equation and use it to obtain analogues of Green's third formula for elliptic operators, first in a bounded domain and then in unbounded domains. We derive an integral equation for classical solutions of the Cauchy problem. A separate study of this equation yields that it has a unique inextensible-in-time solution in weighted spaces of bounded and continuous functions. We prove that every solution of the integral equation is a local-in-time weak solution of the Cauchy problem provided that $q>3$. When $q\in(1,3]$, we use Pokhozhaev's non-linear capacity method to show that the Cauchy problem has no local-in-time weak solutions for a large class of initial functions. When $q\in(3,4]$, this method enables us to prove that the Cauchy problem has no global-in-time weak solutions for a large class of initial functions.
Keywords: non-linear equations of Sobolev type, blow-up, local solubility, non-linear capacity, bounds for the blow-up time.
Funding agency Grant number
Программа стратегического академического лидерства РУДН
Foundation for the Development of Theoretical Physics and Mathematics BASIS
This paper was written with the support of the Programme for strategic academic leadership of the Peoples' Friendship University of Russia and with the support of the “BASIS” Foundation for the development of theoretical physics and mathematics.
Received: 12.07.2019
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 35B44, 35G25, 35G31
Language: English
Original paper language: Russian
Citation: M. O. Korpusov, A. K. Matveeva, “On critical exponents for weak solutions of the Cauchy problem for a non-linear equation of composite type”, Izv. Math., 85:4 (2021), 705–744
Citation in format AMSBIB
\Bibitem{KorMat21}
\by M.~O.~Korpusov, A.~K.~Matveeva
\paper On critical exponents for weak solutions of the Cauchy problem for a~non-linear equation of composite type
\jour Izv. Math.
\yr 2021
\vol 85
\issue 4
\pages 705--744
\mathnet{http://mi.mathnet.ru//eng/im8954}
\crossref{https://doi.org/10.1070/IM8954}
\zmath{https://zbmath.org/?q=an:1473.35068}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..705K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000685548300001}
\elib{https://elibrary.ru/item.asp?id=46899914}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110261172}
Linking options:
  • https://www.mathnet.ru/eng/im8954
  • https://doi.org/10.1070/IM8954
  • https://www.mathnet.ru/eng/im/v85/i4/p96
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:399
    Russian version PDF:115
    English version PDF:34
    Russian version HTML:159
    References:41
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024