Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 2, Pages 209–245
DOI: https://doi.org/10.1070/IM8896
(Mi im8896)
 

This article is cited in 3 scientific papers (total in 3 papers)

A new approach to the question of the existence of bounded solutions of functional differential equations of point type

L. A. Beklaryan

Central Economics and Mathematics Institute Russian Academy of Sciences, Moscow
References:
Abstract: We develop an approach which we used to deduce conditions of a new type for the existence of periodic solutions of ordinary differential equations and functional differential equations of point type. These conditions are based on the use of asymptotic properties of solutions of differential equations which can be observed on shifts of solutions and stated in terms of averages over the period on a distinguished sphere in the phase space. The development of this approach enables us to obtain conditions for the existence of bounded solutions for the same classes of functional differential equations.
Keywords: functional differential equations, bounded solutions.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00147-а
This paper was written with the support of the Russian Foundation for Basic Research (grant no. 19-01000147-a).
Received: 15.01.2019
Revised: 16.06.2019
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 34K13
Language: English
Original paper language: Russian
Citation: L. A. Beklaryan, “A new approach to the question of the existence of bounded solutions of functional differential equations of point type”, Izv. Math., 84:2 (2020), 209–245
Citation in format AMSBIB
\Bibitem{Bek20}
\by L.~A.~Beklaryan
\paper A new approach to the question of~the~existence of~bounded solutions of~functional differential equations of
point type
\jour Izv. Math.
\yr 2020
\vol 84
\issue 2
\pages 209--245
\mathnet{http://mi.mathnet.ru//eng/im8896}
\crossref{https://doi.org/10.1070/IM8896}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4159774}
\zmath{https://zbmath.org/?q=an:1458.34120}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..209B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000531302900001}
\elib{https://elibrary.ru/item.asp?id=43299301}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085769969}
Linking options:
  • https://www.mathnet.ru/eng/im8896
  • https://doi.org/10.1070/IM8896
  • https://www.mathnet.ru/eng/im/v84/i2/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:354
    Russian version PDF:58
    English version PDF:22
    References:38
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024