Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 2, Pages 246–261
DOI: https://doi.org/10.1070/IM8891
(Mi im8891)
 

This article is cited in 5 scientific papers (total in 5 papers)

Greedy approximation by arbitrary set

P. A. Borodin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We define various algorithms for greedy approximations by elements of an arbitrary set $M$ in a Banach space. We study the convergence of these algorithms in a Hilbert space under various geometric conditions on $M$. As a consequence, we obtain sufficient conditions for the additive semigroup generated by $M$ to be dense.
Keywords: greedy approximation, Hilbert space, density of a semigroup.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.W03.31.0031
Russian Foundation for Basic Research 18-01-00333а
This paper was written with the financial support of a grant of the Government of the Russian Federation (project 14.W03.31.0031). Theorem 5 was proved within the research program of RFBR (grant no. 18-01-00333a).
Received: 31.12.2018
Revised: 08.06.2019
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
MSC: 41A65
Language: English
Original paper language: Russian
Citation: P. A. Borodin, “Greedy approximation by arbitrary set”, Izv. Math., 84:2 (2020), 246–261
Citation in format AMSBIB
\Bibitem{Bor20}
\by P.~A.~Borodin
\paper Greedy approximation by arbitrary set
\jour Izv. Math.
\yr 2020
\vol 84
\issue 2
\pages 246--261
\mathnet{http://mi.mathnet.ru//eng/im8891}
\crossref{https://doi.org/10.1070/IM8891}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4072560}
\zmath{https://zbmath.org/?q=an:1471.41014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..246B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000530347900001}
\elib{https://elibrary.ru/item.asp?id=43299776}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085920379}
Linking options:
  • https://www.mathnet.ru/eng/im8891
  • https://doi.org/10.1070/IM8891
  • https://www.mathnet.ru/eng/im/v84/i2/p43
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:526
    Russian version PDF:101
    English version PDF:28
    References:49
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024