Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 42, Issue 1, Pages 67–89
DOI: https://doi.org/10.1070/IM1994v042n01ABEH001534
(Mi im888)
 

This article is cited in 10 scientific papers (total in 10 papers)

Alexander polynomials of plane algebraic curves

Vik. S. Kulikov
References:
Abstract: The author studies the fundamental group of the complement of an algebraic curve $D\subset\mathbf C^2$ defined by an equation $f(x,y)=0$. Let $F\colon X=\mathbf C^2\setminus D\to\mathbf C^*=\mathbf C\setminus\{0\}$ be the morphism defined by the equation $z=f(x,y)$. The main result is that if the generic fiber $Y=F^{-1}(z_0)$ is irreducible, then the kernel of the homomorphism $F_*\colon\pi_1(X)\to\pi_1(\mathbf C^*)$ is a finitely generated group. In particular, if $D$ is an irreducible curve, then the commutator subgroup of $\pi_1(X)$ is finitely generated.
The internal and external Alexander polynomials of a curve $D$ (denoted by $\Delta_{in}(t)$ and $\Delta_{ex}(t)$ respectively) are introduced, and it is shown that the Alexander polynomial $\Delta_1(t)$ of the curve $D$ divides $\Delta_{in}(t)$ and $\Delta_{ex}(t)$ and is a reciprocal polynomial whose roots are roots of unity. Furthermore, if $D$ is an irreducible curve, the Alexander polynomial $\Delta_1(t)$ of the curve $D$ satisfies the condition $\Delta_1(1)=\pm1$. From this it follows that among the roots of the Alexander polynomial $\Delta_1(t)$ of an irreducible curve there are no primitive roots of unity of degree $p^n$, where $p$ is a prime number.
Received: 24.03.1992
Bibliographic databases:
Document Type: Article
UDC: 512.7+515.1
Language: English
Original paper language: Russian
Citation: Vik. S. Kulikov, “Alexander polynomials of plane algebraic curves”, Russian Acad. Sci. Izv. Math., 42:1 (1994), 67–89
Citation in format AMSBIB
\Bibitem{Kul93}
\by Vik.~S.~Kulikov
\paper Alexander polynomials of plane algebraic curves
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 42
\issue 1
\pages 67--89
\mathnet{http://mi.mathnet.ru//eng/im888}
\crossref{https://doi.org/10.1070/IM1994v042n01ABEH001534}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1220582}
\zmath{https://zbmath.org/?q=an:0811.14017}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..42...67K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994NH32100004}
Linking options:
  • https://www.mathnet.ru/eng/im888
  • https://doi.org/10.1070/IM1994v042n01ABEH001534
  • https://www.mathnet.ru/eng/im/v57/i1/p76
    Cycle of papers
    This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024