|
This article is cited in 10 scientific papers (total in 10 papers)
Alexander polynomials of plane algebraic curves
Vik. S. Kulikov
Abstract:
The author studies the fundamental group of the complement of an algebraic curve $D\subset\mathbf C^2$ defined by an equation $f(x,y)=0$. Let $F\colon X=\mathbf C^2\setminus D\to\mathbf C^*=\mathbf C\setminus\{0\}$ be the morphism defined by the equation $z=f(x,y)$. The main result is that if the generic fiber $Y=F^{-1}(z_0)$ is irreducible, then the kernel of the homomorphism $F_*\colon\pi_1(X)\to\pi_1(\mathbf C^*)$ is a finitely generated group. In particular, if $D$ is an irreducible curve, then the commutator subgroup of $\pi_1(X)$ is finitely generated.
The internal and external Alexander polynomials of a curve $D$ (denoted by $\Delta_{in}(t)$ and $\Delta_{ex}(t)$ respectively) are introduced, and it is shown that the Alexander polynomial $\Delta_1(t)$ of the curve $D$ divides $\Delta_{in}(t)$ and $\Delta_{ex}(t)$ and is a reciprocal polynomial whose roots are roots of unity. Furthermore, if $D$ is an irreducible curve, the Alexander polynomial $\Delta_1(t)$ of the curve $D$ satisfies the condition $\Delta_1(1)=\pm1$. From this it follows that among the roots of the Alexander polynomial $\Delta_1(t)$ of an irreducible curve there are no primitive roots of unity of degree $p^n$, where $p$ is a prime number.
Received: 24.03.1992
Citation:
Vik. S. Kulikov, “Alexander polynomials of plane algebraic curves”, Russian Acad. Sci. Izv. Math., 42:1 (1994), 67–89
Linking options:
https://www.mathnet.ru/eng/im888https://doi.org/10.1070/IM1994v042n01ABEH001534 https://www.mathnet.ru/eng/im/v57/i1/p76
|
|