Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 2, Pages 291–323
DOI: https://doi.org/10.1070/IM8869
(Mi im8869)
 

This article is cited in 3 scientific papers (total in 3 papers)

Conditions of modularity of the congruence lattice of an act over a rectangular band

I. B. Kozhukhovab, A. M. Pryanichnikovac, A. R. Simakovad

a National Research University of Electronic Technology
b Lomonosov Moscow State University
c "Kaskad"
d Innovation Group "I-Teco"
References:
Abstract: We describe polygons over rectangular bands that have modular, distributive or linearly ordered congruence lattice. It turns out that such polygons have at most 11 elements, and their congruence lattice has at most 300 elements. Furthermore, certain facts are established about the structure of polygons with modular congruence lattice over an arbitrary semigroup and about the structure of the congruence lattice of a polygon over a rectangular band. The work is based on the description of polygons over a completely (0-)simple semigroup obtained by Avdeev and Kozhukhov in 2000 and on the characterization of disconnected polygons with modular or distributive congruence lattice by Ptakhov and Stepanova in 2013.
Keywords: polygon over a semigroup, rectangular band, congruence lattice, modular lattice.
Received: 26.09.2018
Revised: 27.02.2019
Bibliographic databases:
Document Type: Article
UDC: 512.579 + 512.567.5
MSC: 06B10, 08B10
Language: English
Original paper language: Russian
Citation: I. B. Kozhukhov, A. M. Pryanichnikov, A. R. Simakova, “Conditions of modularity of the congruence lattice of an act over a rectangular band”, Izv. Math., 84:2 (2020), 291–323
Citation in format AMSBIB
\Bibitem{KozPrySim20}
\by I.~B.~Kozhukhov, A.~M.~Pryanichnikov, A.~R.~Simakova
\paper Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band
\jour Izv. Math.
\yr 2020
\vol 84
\issue 2
\pages 291--323
\mathnet{http://mi.mathnet.ru//eng/im8869}
\crossref{https://doi.org/10.1070/IM8869}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4081950}
\zmath{https://zbmath.org/?q=an:1457.20049}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..291K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000530293600001}
\elib{https://elibrary.ru/item.asp?id=43291885}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085757073}
Linking options:
  • https://www.mathnet.ru/eng/im8869
  • https://doi.org/10.1070/IM8869
  • https://www.mathnet.ru/eng/im/v84/i2/p90
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024