Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 6, Pages 1137–1173
DOI: https://doi.org/10.1070/IM8863
(Mi im8863)
 

This article is cited in 25 scientific papers (total in 25 papers)

Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards

V. V. Vedyushkina (Fokicheva), A. T. Fomenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The authors have recently introduced the class of topological billiards. Topological billiards are glued from elementary planar billiard sheets (bounded by arcs of confocal quadrics) along intervals of their boundaries. It turns out that the integrability of the elementary billiards implies that of the topological billiards. We show that all classical linearly and quadratically integrable geodesic flows on tori and spheres are Liouville equivalent to appropriate topological billiards. Moreover, the linear and quadratic integrals of the geodesic flows reduce to a single canonical linear integral and a single canonical quadratic integral on the billiard. These results are obtained within the framework of the Fomenko–Zieschang theory of the classification of integrable systems.
Keywords: integrable system, topological billiard, geodesic flow, Liouville equivalence, Fomenko–Zieschang invariant.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6399.2018.1
Russian Foundation for Basic Research 19-01-00775-a
This paper was written with the support of the Russian Federation President's Programme for the support of leading scientific schools (grant no. NSh-6399.2018.1, contract no. 075-02-2018-867), and the Russian Foundation for Basic Research (grant no. 19-01-00775-a).
Received: 13.09.2018
Revised: 04.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37D50; Secondary 37J35
Language: English
Original paper language: Russian
Citation: V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173
Citation in format AMSBIB
\Bibitem{VedFom19}
\by V.~V.~Vedyushkina (Fokicheva), A.~T.~Fomenko
\paper Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards
\jour Izv. Math.
\yr 2019
\vol 83
\issue 6
\pages 1137--1173
\mathnet{http://mi.mathnet.ru//eng/im8863}
\crossref{https://doi.org/10.1070/IM8863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4036751}
\zmath{https://zbmath.org/?q=an:1436.37068}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83.1137F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510720200002}
\elib{https://elibrary.ru/item.asp?id=43717170}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082945155}
Linking options:
  • https://www.mathnet.ru/eng/im8863
  • https://doi.org/10.1070/IM8863
  • https://www.mathnet.ru/eng/im/v83/i6/p63
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:621
    Russian version PDF:103
    English version PDF:35
    References:51
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024