Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 4, Pages 657–675
DOI: https://doi.org/10.1070/IM8842
(Mi im8842)
 

This article is cited in 3 scientific papers (total in 3 papers)

On accumulation points of volumes of log surfaces

V. A. Alexeeva, W. Liub

a Department of Mathematics, University of Georgia, Athens, USA
b School of Mathematical Sciences, Xiamen University, China
References:
Abstract: Let $\mathcal{C} \subset [0,1]$ be a set satisfying the descending chain condition. We show that every accumulation point of volumes of log canonical surfaces $(X, B)$ with coefficients in $ \mathcal{C} $ can be realized as the volume of a log canonical surface with big and nef $K_X+B$ and with coefficients in $\overline{\mathcal{C}} \cup \{1 \}$ in such a way that at least one coefficient lies in $\operatorname{Acc} (\mathcal{C}) \cup \{1 \}$. As a corollary, if $\overline {\mathcal{C}} \subset \mathbb{Q}$, then all accumulation points of volumes are rational numbers. This proves a conjecture of Blache. For the set of standard coefficients $\mathcal{C}_2=\{1-1/{n} \mid n\in\mathbb{N} \} \cup \{1 \}$ we prove that the minimal accumulation point is between $1/{(7^2 \cdot 42^2)}$ and $1/{42^2}$.
Keywords: log canonical surfaces, volume, accumulation points.
Funding agency Grant number
National Science Foundation DMS-1603604
National Natural Science Foundation of China 11501012
11771294
The Recruitment Program for Young Professionals
The first author's work was partially supported by NSF, grant DMS-1603604. The second author was partially supported by NSFC (no. 11501012, no. 11771294) and Recruitment Program for Young Professionals.
Received: 13.07.2018
Bibliographic databases:
Document Type: Article
UDC: 512.774.15+512.774.2
MSC: Primary 14J29; Secondary 14J26, 14R05
Language: English
Original paper language: Russian
Citation: V. A. Alexeev, W. Liu, “On accumulation points of volumes of log surfaces”, Izv. Math., 83:4 (2019), 657–675
Citation in format AMSBIB
\Bibitem{AleLiu19}
\by V.~A.~Alexeev, W.~Liu
\paper On accumulation points of volumes of log surfaces
\jour Izv. Math.
\yr 2019
\vol 83
\issue 4
\pages 657--675
\mathnet{http://mi.mathnet.ru//eng/im8842}
\crossref{https://doi.org/10.1070/IM8842}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985688}
\zmath{https://zbmath.org/?q=an:1423.14234}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..657A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000487318500001}
\elib{https://elibrary.ru/item.asp?id=38590294}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070675560}
Linking options:
  • https://www.mathnet.ru/eng/im8842
  • https://doi.org/10.1070/IM8842
  • https://www.mathnet.ru/eng/im/v83/i4/p5
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:343
    Russian version PDF:36
    English version PDF:11
    References:40
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024