Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 3, Pages 415–423
DOI: https://doi.org/10.1070/IM8837
(Mi im8837)
 

This article is cited in 5 scientific papers (total in 5 papers)

Biregular and birational geometry of quartic double solids with 15 nodes

A. Avilov

National Research University Higher School of Economics, Moscow
References:
Abstract: Three-dimensional del Pezzo varieties of degree $2$ are double covers of $\mathbb{P}^{3}$ branched in a quartic. We prove that if a del Pezzo variety of degree $2$ has exactly $15$ nodes, then the corresponding quartic is a hyperplane section of the Igusa quartic or, equivalently, all such del Pezzo varieties are members of a particular linear system on the Coble fourfold. Their automorphism groups are induced from the automorphism group of the Coble fourfold. We also classify all birationally rigid varieties of this type.
Keywords: del Pezzo varieties, automorphism groups, birational rigidity.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
Contest «Young Russian Mathematics»
Partially supported by the Russian Academic Excellence Project ‘5-100’ and by a ‘Young Russian Mathematics’ award.
Received: 02.07.2018
Revised: 27.12.2018
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2019, Volume 83, Issue 3, Pages 5–14
DOI: https://doi.org/10.4213/im8837
Bibliographic databases:
Document Type: Article
UDC: 512.776
MSC: 14J45, 14M20, 14N25
Language: English
Original paper language: Russian
Citation: A. Avilov, “Biregular and birational geometry of quartic double solids with 15 nodes”, Izv. RAN. Ser. Mat., 83:3 (2019), 5–14; Izv. Math., 83:3 (2019), 415–423
Citation in format AMSBIB
\Bibitem{Avi19}
\by A.~Avilov
\paper Biregular and birational geometry of quartic double solids with 15 nodes
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 3
\pages 5--14
\mathnet{http://mi.mathnet.ru/im8837}
\crossref{https://doi.org/10.4213/im8837}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954304}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..415A}
\elib{https://elibrary.ru/item.asp?id=37652141}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 3
\pages 415--423
\crossref{https://doi.org/10.1070/IM8837}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472863800001}
Linking options:
  • https://www.mathnet.ru/eng/im8837
  • https://doi.org/10.1070/IM8837
  • https://www.mathnet.ru/eng/im/v83/i3/p5
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:417
    Russian version PDF:39
    English version PDF:19
    References:36
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024