Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 4, Pages 676–697
DOI: https://doi.org/10.1070/IM8835
(Mi im8835)
 

This article is cited in 1 scientific paper (total in 1 paper)

Stringy $E$-functions of canonical toric Fano threefolds and their applications

V. V. Batyreva, K. Schallerb

a Mathematisches Institut, Universität Tübingen, Tübingen, Germany
b Mathematisches Institut, Freie Universität Berlin, Berlin, Germany
References:
Abstract: Let $\Delta$ be a $3$-dimensional lattice polytope containing exactly one interior lattice point. We give a simple combinatorial formula for computing the stringy $E$-function of the $3$-dimensional canonical toric Fano variety $X_{\Delta}$ associated with $\Delta$. Using the stringy Libgober–Wood identity and our formula, we generalize the well-known combinatorial identity $\sum_{\substack{\theta \preceq \Delta\\ \dim (\theta) =1}}v(\theta) \cdot v(\theta^*) = 24$ which holds for $3$-dimensional reflexive polytopes $\Delta$.
Keywords: Fano varieties, $K3$-surfaces, lattice polytopes, toric varieties.
Received: 01.07.2018
Revised: 04.09.2018
Bibliographic databases:
Document Type: Article
UDC: 512.77
MSC: Primary 14M25; Secondary 14J28, 14J30, 14J45, 52B20
Language: English
Original paper language: Russian
Citation: V. V. Batyrev, K. Schaller, “Stringy $E$-functions of canonical toric Fano threefolds and their applications”, Izv. Math., 83:4 (2019), 676–697
Citation in format AMSBIB
\Bibitem{BatSch19}
\by V.~V.~Batyrev, K.~Schaller
\paper Stringy $E$-functions of canonical toric Fano threefolds and their applications
\jour Izv. Math.
\yr 2019
\vol 83
\issue 4
\pages 676--697
\mathnet{http://mi.mathnet.ru//eng/im8835}
\crossref{https://doi.org/10.1070/IM8835}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985689}
\zmath{https://zbmath.org/?q=an:1427.14107}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..676B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000487318500002}
\elib{https://elibrary.ru/item.asp?id=38590295}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074922398}
Linking options:
  • https://www.mathnet.ru/eng/im8835
  • https://doi.org/10.1070/IM8835
  • https://www.mathnet.ru/eng/im/v83/i4/p26
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:331
    Russian version PDF:29
    English version PDF:15
    References:42
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024