Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 5, Pages 1050–1065
DOI: https://doi.org/10.1070/IM8808
(Mi im8808)
 

Properties of factorization operators in boundary crossing problems for random walks

V. I. Lotovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: We study the properties of operators arising in the calculation of double Laplace–Stieltjes transforms of distributions in various boundary crossing problems for random walks. Such operators are defined in terms of the components of the Wiener–Hopf factorization. We give bounds for the norms of these operators and prove continuity theorems.
Keywords: random walk, boundary crossing problems, Wiener–Hopf factorization.
Funding agency Grant number
Russian Science Foundation 18-11-00129
This work was supported by the Russian Science Foundation (grant no. 18-11-00129).
Received: 07.05.2018
Revised: 15.10.2018
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: Primary 60G50; Secondary 62E20
Language: English
Original paper language: Russian
Citation: V. I. Lotov, “Properties of factorization operators in boundary crossing problems for random walks”, Izv. Math., 83:5 (2019), 1050–1065
Citation in format AMSBIB
\Bibitem{Lot19}
\by V.~I.~Lotov
\paper Properties of factorization operators in boundary crossing problems for random walks
\jour Izv. Math.
\yr 2019
\vol 83
\issue 5
\pages 1050--1065
\mathnet{http://mi.mathnet.ru//eng/im8808}
\crossref{https://doi.org/10.1070/IM8808}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017547}
\zmath{https://zbmath.org/?q=an:1423.60074}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83.1050L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510719200006}
\elib{https://elibrary.ru/item.asp?id=43247182}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079417516}
Linking options:
  • https://www.mathnet.ru/eng/im8808
  • https://doi.org/10.1070/IM8808
  • https://www.mathnet.ru/eng/im/v83/i5/p149
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:380
    Russian version PDF:38
    English version PDF:13
    References:46
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024