Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 5, Pages 909–931
DOI: https://doi.org/10.1070/IM8805
(Mi im8805)
 

This article is cited in 9 scientific papers (total in 9 papers)

Conformally invariant inequalities in domains in Euclidean space

F. G. Avkhadiev

Kazan (Volga Region) Federal University
References:
Abstract: We study conformally invariant integral inequalities for real-valued functions defined on domains $\Omega$ in $n$-dimensional Euclidean space. The domains considered are of hyperbolic type, that is, they admit a hyperbolic radius $R=R(x, \Omega)$ satisfying the Liouville non-linear differential equation and vanishing on the boundary of the domain. We prove several inequalities which hold for all smooth compactly supported functions $u$ defined on a given domain of hyperbolic type. Here are two of them:
\begin{gather*} \int|\nabla u|^2R^{2-n}\, dx \geqslant n (n-2)\int|u|^2R^{-n}\, dx, \\ \int|(\nabla u, \nabla R)|^p R^{p-s}\, dx\geqslant \frac{2^pn^p}{p^p}\int|u|^pR^{-s}\, dx, \end{gather*}
where $n\geqslant 2$, $1\leqslant p< \infty$ and $1+n/2 \leqslant s <\infty$. We also study the relations between Euclidean and hyperbolic characteristics of domains.
Keywords: Hardy-type inequality, hyperbolic radius, Liouville equation, Poincaré metric.
Funding agency Grant number
Russian Science Foundation 18-11-00115
This work is supported by the Russian Science Foundation under grant no. 18-11-00115.
Received: 03.05.2018
Revised: 15.09.2018
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2019, Volume 83, Issue 5, Pages 3–26
DOI: https://doi.org/10.4213/im8805
Bibliographic databases:
Document Type: Article
UDC: 517.518.23+517.956.2+514.13
MSC: Primary 26E10; Secondary 46E35, 53A30
Language: English
Original paper language: Russian
Citation: F. G. Avkhadiev, “Conformally invariant inequalities in domains in Euclidean space”, Izv. RAN. Ser. Mat., 83:5 (2019), 3–26; Izv. Math., 83:5 (2019), 909–931
Citation in format AMSBIB
\Bibitem{Avk19}
\by F.~G.~Avkhadiev
\paper Conformally invariant inequalities in domains in Euclidean space
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 5
\pages 3--26
\mathnet{http://mi.mathnet.ru/im8805}
\crossref{https://doi.org/10.4213/im8805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017542}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..909A}
\elib{https://elibrary.ru/item.asp?id=43209704}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 5
\pages 909--931
\crossref{https://doi.org/10.1070/IM8805}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510719200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073699295}
Linking options:
  • https://www.mathnet.ru/eng/im8805
  • https://doi.org/10.1070/IM8805
  • https://www.mathnet.ru/eng/im/v83/i5/p3
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:575
    Russian version PDF:65
    English version PDF:23
    References:58
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024