Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 42, Issue 2, Pages 261–298
DOI: https://doi.org/10.1070/IM1994v042n02ABEH001537
(Mi im878)
 

This article is cited in 20 scientific papers (total in 20 papers)

Relativizable and nonrelativizable theorems in the polynomial theory of algorithms

N. K. Vereshchagin

Institute of New Technologies
References:
Abstract: Starting with the paper of Baker, Gill, and Solovay [BGS 75] in complexity theory, many results have been proved that separate certain relativized complexity classes or show that they have no complete language. All results of this kind were, in fact, based on lower bounds for Boolean decision trees of a certain type or for machines with polylogarithmic restrictions on time. The following question arises: Are these methods of proving “relativized” results universal? In the first part of the present paper a general framework is proposed in which assertions of universality of this kind may be formulated and proved as convenient criteria. Using these criteria we obtain, as easy consequences of the known results on Boolean decision trees, some new “relativized” results and new proofs of some known results. In the second part of the paper, these general criteria are applied to many particular cases. For example, for many of the complexity classes studied in the literature all relativizable inclusions between the classes are found.
Received: 16.03.1990
Revised: 18.11.1991
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1993, Volume 57, Issue 2, Pages 51–90
Bibliographic databases:
UDC: 510.52
MSC: 68Q15
Language: English
Original paper language: Russian
Citation: N. K. Vereshchagin, “Relativizable and nonrelativizable theorems in the polynomial theory of algorithms”, Izv. RAN. Ser. Mat., 57:2 (1993), 51–90; Russian Acad. Sci. Izv. Math., 42:2 (1994), 261–298
Citation in format AMSBIB
\Bibitem{Ver93}
\by N.~K.~Vereshchagin
\paper Relativizable and nonrelativizable theorems in the polynomial theory of algorithms
\jour Izv. RAN. Ser. Mat.
\yr 1993
\vol 57
\issue 2
\pages 51--90
\mathnet{http://mi.mathnet.ru/im878}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1230967}
\zmath{https://zbmath.org/?q=an:0822.68035}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..42..261V}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 42
\issue 2
\pages 261--298
\crossref{https://doi.org/10.1070/IM1994v042n02ABEH001537}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994NT25700002}
Linking options:
  • https://www.mathnet.ru/eng/im878
  • https://doi.org/10.1070/IM1994v042n02ABEH001537
  • https://www.mathnet.ru/eng/im/v57/i2/p51
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:623
    Russian version PDF:161
    English version PDF:32
    References:51
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024