Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 1, Pages 1–19
DOI: https://doi.org/10.1070/IM8766
(Mi im8766)
 

This article is cited in 4 scientific papers (total in 4 papers)

Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank 4

N. V. Bogachevabc

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
b Lomonosov Moscow State University
c Caucasus Mathematical Center, Adyghe State University, Maikop
References:
Abstract: A hyperbolic lattice is said to be (1,2)(1,2)-reflective if its automorphism group is generated by 11- and 22-reflections up to finite index. We prove that the fundamental polyhedron of a Q-arithmetic cocompact reflection group in three-dimensional Lobachevsky space contains an edge with sufficiently small distance between its framing faces. Using this fact, we obtain a classification of (1,2)-reflective anisotropic hyperbolic lattices of rank 4.
Keywords: reflective hyperbolic lattices, roots, reflection groups, fundamental polyhedra, Coxeter polyhedra.
Funding agency Grant number
Simons Foundation
Partially supported by the Simons Foundation.
Received: 03.02.2018
Bibliographic databases:
Document Type: Article
UDC: 519.45+512.7+512.81
Language: English
Original paper language: Russian
Citation: N. V. Bogachev, “Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank 4”, Izv. Math., 83:1 (2019), 1–19
Citation in format AMSBIB
\Bibitem{Bog19}
\by N.~V.~Bogachev
\paper Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4
\jour Izv. Math.
\yr 2019
\vol 83
\issue 1
\pages 1--19
\mathnet{http://mi.mathnet.ru/eng/im8766}
\crossref{https://doi.org/10.1070/IM8766}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920388}
\zmath{https://zbmath.org/?q=an:1427.11064}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83....1B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000459866800001}
\elib{https://elibrary.ru/item.asp?id=37045034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064092454}
Linking options:
  • https://www.mathnet.ru/eng/im8766
  • https://doi.org/10.1070/IM8766
  • https://www.mathnet.ru/eng/im/v83/i1/p3
  • This publication is cited in the following 4 articles:
    1. N. Bogachev, “From geometry to arithmetic of compact hyperbolic Coxeter polytopes”, Transformation Groups, 28:1 (2023), 77–105  crossref  mathscinet
    2. S. Alexandrov, “Lannér diagrams and combinatorial properties of compact hyperbolic Coxeter polytopes”, Trans. Amer. Math. Soc., 376 (2023), 6989–7012  crossref  mathscinet
    3. N. Bogachev, A. Kolpakov, “On faces of quasi-arithmetic Coxeter polytopes”, Int. Math. Res. Notices, 2021:4 (2021), 3078–3096  crossref  mathscinet  zmath  isi
    4. N. V. Bogachev, “Classification of stably reflective hyperbolic Z[2]-lattices of rank 4”, Dokl. Math., 99:3 (2019), 241–244  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:492
    Russian version PDF:61
    English version PDF:21
    References:54
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025