Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 1, Pages 1–19
DOI: https://doi.org/10.1070/IM8766
(Mi im8766)
 

This article is cited in 4 scientific papers (total in 4 papers)

Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank 4

N. V. Bogachevabc

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
b Lomonosov Moscow State University
c Caucasus Mathematical Center, Adyghe State University, Maikop
References:
Abstract: A hyperbolic lattice is said to be $(1{,}{\kern1pt}2)$-reflective if its automorphism group is generated by $1$- and $2$-reflections up to finite index. We prove that the fundamental polyhedron of a $\mathbb{Q}$-arithmetic cocompact reflection group in three-dimensional Lobachevsky space contains an edge with sufficiently small distance between its framing faces. Using this fact, we obtain a classification of $(1{,}{\kern1pt}2)$-reflective anisotropic hyperbolic lattices of rank $4$.
Keywords: reflective hyperbolic lattices, roots, reflection groups, fundamental polyhedra, Coxeter polyhedra.
Funding agency Grant number
Simons Foundation
Partially supported by the Simons Foundation.
Received: 03.02.2018
Bibliographic databases:
Document Type: Article
UDC: 519.45+512.7+512.81
Language: English
Original paper language: Russian
Citation: N. V. Bogachev, “Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank 4”, Izv. Math., 83:1 (2019), 1–19
Citation in format AMSBIB
\Bibitem{Bog19}
\by N.~V.~Bogachev
\paper Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4
\jour Izv. Math.
\yr 2019
\vol 83
\issue 1
\pages 1--19
\mathnet{http://mi.mathnet.ru//eng/im8766}
\crossref{https://doi.org/10.1070/IM8766}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920388}
\zmath{https://zbmath.org/?q=an:1427.11064}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83....1B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000459866800001}
\elib{https://elibrary.ru/item.asp?id=37045034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064092454}
Linking options:
  • https://www.mathnet.ru/eng/im8766
  • https://doi.org/10.1070/IM8766
  • https://www.mathnet.ru/eng/im/v83/i1/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024