Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 5, Pages 861–879
DOI: https://doi.org/10.1070/IM8763
(Mi im8763)
 

This article is cited in 3 scientific papers (total in 3 papers)

Diagonal complexes

J. A. Gordonab, G. Yu. Paninacd

a National Research University Higher School of Economics, Moscow
b Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
d St. Petersburg State University, Mathematics and Mechanics Faculty
References:
Abstract: It is known that the partially ordered set of all tuples of pairwise non-intersecting diagonals in an $n$-gon is isomorphic to the face lattice of a convex polytope called the associahedron. We replace the $n$-gon (viewed as a disc with $n$ marked points on the boundary) by an arbitrary oriented surface with a set of labelled marked points (‘vertices’). After appropriate definitions we arrive at a cell complex $\mathcal{D}$ (generalizing the associahedron) with the barycentric subdivision $\mathcal{BD}$. When the surface is closed, the complex $\mathcal{D}$ (as well as $\mathcal{BD}$) is homotopy equivalent to the space $RG_{g,n}^{\mathrm{met}}$ of metric ribbon graphs or, equivalently, to the decorated moduli space $\widetilde{\mathcal{M}}_{g,n}$. For bordered surfaces we prove the following. 1) Contraction of an edge does not change the homotopy type of the complex. 2) Contraction of a boundary component to a new marked point yields a forgetful map between two diagonal complexes which is homotopy equivalent to the Kontsevich tautological circle bundle. Thus we obtain a natural simplicial model for the tautological bundle. As an application, we compute the psi-class, that is, the first Chern class in combinatorial terms. This result is obtained by using a local combinatorial formula. 3) In the same way, contraction of several boundary components corresponds to the Whitney sum of tautological bundles.
Keywords: moduli space, ribbon graphs, curve complex, associahedron, Chern class.
Funding agency Grant number
Russian Science Foundation 16-11-10039
This work is supported by the Russian Science Foundation (grant no. 16-11-10039).
Received: 31.01.2018
Revised: 14.03.2018
Bibliographic databases:
Document Type: Article
UDC: 515.164.2
MSC: 52B70, 32G15
Language: English
Original paper language: Russian
Citation: J. A. Gordon, G. Yu. Panina, “Diagonal complexes”, Izv. Math., 82:5 (2018), 861–879
Citation in format AMSBIB
\Bibitem{GorPan18}
\by J.~A.~Gordon, G.~Yu.~Panina
\paper Diagonal complexes
\jour Izv. Math.
\yr 2018
\vol 82
\issue 5
\pages 861--879
\mathnet{http://mi.mathnet.ru//eng/im8763}
\crossref{https://doi.org/10.1070/IM8763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859377}
\zmath{https://zbmath.org/?q=an:1406.52033}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..861G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448948200001}
\elib{https://elibrary.ru/item.asp?id=36448770}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056373024}
Linking options:
  • https://www.mathnet.ru/eng/im8763
  • https://doi.org/10.1070/IM8763
  • https://www.mathnet.ru/eng/im/v82/i5/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024