Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 4, Pages 752–816
DOI: https://doi.org/10.1070/IM8719
(Mi im8719)
 

This article is cited in 5 scientific papers (total in 5 papers)

Classification of Picard lattices of K3 surfaces

V. V. Nikulinab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
References:
Abstract: Using the results of our papers [1]–[4] on the classification of degenerations of Kählerian K3 surfaces, we classify the Picard lattices of Kählerian K3 surfaces. By classification we mean classification depending on their possible finite symplectic automorphism groups and their non-singular rational curves when the Picard lattice is negative definite.
Keywords: K3 surface, complex surface, Picard lattice, automorphism group, rational curve, degeneration, integer symmetric bilinear form.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: 15.09.2017
Bibliographic databases:
Document Type: Article
UDC: 512.774.4+515.173.4+512.722+512.774.2+512.774.3+512.647.2
Language: English
Original paper language: Russian
Citation: V. V. Nikulin, “Classification of Picard lattices of K3 surfaces”, Izv. Math., 82:4 (2018), 752–816
Citation in format AMSBIB
\Bibitem{Nik18}
\by V.~V.~Nikulin
\paper Classification of Picard lattices of K3 surfaces
\jour Izv. Math.
\yr 2018
\vol 82
\issue 4
\pages 752--816
\mathnet{http://mi.mathnet.ru//eng/im8719}
\crossref{https://doi.org/10.1070/IM8719}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833475}
\zmath{https://zbmath.org/?q=an:1400.14100}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..752N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443002900004}
\elib{https://elibrary.ru/item.asp?id=35276430}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053122885}
Linking options:
  • https://www.mathnet.ru/eng/im8719
  • https://doi.org/10.1070/IM8719
  • https://www.mathnet.ru/eng/im/v82/i4/p115
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:421
    Russian version PDF:47
    English version PDF:16
    References:42
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024