Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 5, Pages 931–983
DOI: https://doi.org/10.1070/IM8687
(Mi im8687)
 

This article is cited in 1 scientific paper (total in 1 paper)

Extension of functions in non-isotropic Nikolskii–Besov spaces and approximation of their derivatives

S. N. Kudryavtsev

Institute of Informatics Problems of the Russian Academy of Sciences
References:
Abstract: We consider non-isotropic Nikolskii and Besov spaces with norms defined using `$L_p$-averaged' moduli of continuity of functions of appropriate orders along the coordinate directions, instead of moduli of continuity of given orders for derivatives along these directions. We construct continuous linear maps from such spaces of functions defined in domains of certain type to the ordinary non-isotropic Nikolskii and Besov spaces on $ \mathbb{R}^d$ in such a way that these maps are function extension operators. Hence both kinds of spaces coincide on such domains. We also find the weak asymptotics of approximation characteristics related to the problem of recovering the derivative from the values of a function at a given number of points, Stechkin's problem for the differentiation operator, and the problem of width asymptotics for non-isotropic Nikolskii and Besov classes in these domains.
Keywords: non-isotropic Nikolskii–Besov spaces, extension of functions, equivalent norms, derivative recovery, operator approximation, width.
Received: 26.04.2017
Revised: 16.10.2017
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: English
Original paper language: Russian
Citation: S. N. Kudryavtsev, “Extension of functions in non-isotropic Nikolskii–Besov spaces and approximation of their derivatives”, Izv. Math., 82:5 (2018), 931–983
Citation in format AMSBIB
\Bibitem{Kud18}
\by S.~N.~Kudryavtsev
\paper Extension of functions in non-isotropic Nikolskii--Besov spaces and
approximation of their derivatives
\jour Izv. Math.
\yr 2018
\vol 82
\issue 5
\pages 931--983
\mathnet{http://mi.mathnet.ru//eng/im8687}
\crossref{https://doi.org/10.1070/IM8687}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859380}
\zmath{https://zbmath.org/?q=an:1412.46045}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..931K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448948200004}
\elib{https://elibrary.ru/item.asp?id=36448773}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056395573}
Linking options:
  • https://www.mathnet.ru/eng/im8687
  • https://doi.org/10.1070/IM8687
  • https://www.mathnet.ru/eng/im/v82/i5/p78
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:415
    Russian version PDF:56
    English version PDF:20
    References:69
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024