Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 5, Pages 984–1005
DOI: https://doi.org/10.1070/IM8669
(Mi im8669)
 

This article is cited in 3 scientific papers (total in 3 papers)

Existence of a solution in the form of a moving front of a reaction-diffusion-advection problem in the case of balanced advection

N. T. Levashova, N. N. Nefedov, A. V. Yagremtsev

Faculty of Physics, Lomonosov Moscow State University
References:
Abstract: We consider the initial-boundary value problem for an equation of reaction-diffusion-advection type in the case when the condition of balanced advection is satisfied. We give an algorithm for constructing an asymptotic representation of a solution which has the form of a moving front, obtain the equation of motion for the point of localization of the front, and prove the existence of that solution. The proof uses the asymptotic method of differential inequalities.
Keywords: equation of reaction-diffusion-advection type, small parameter, asymptotic methods, internal transition layer, motion of a front, differential inequalities.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00437
The research was supported by the Russian Foundation for Basic Research (grant no. 16-01-00437).
Received: 02.03.2017
Revised: 19.09.2017
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
PACS: 02.30.Jr
MSC: Primary 35K20; Secondary 35A35, 35B25, 35C20, 65M99
Language: English
Original paper language: Russian
Citation: N. T. Levashova, N. N. Nefedov, A. V. Yagremtsev, “Existence of a solution in the form of a moving front of a reaction-diffusion-advection problem in the case of balanced advection”, Izv. Math., 82:5 (2018), 984–1005
Citation in format AMSBIB
\Bibitem{LevNefYag18}
\by N.~T.~Levashova, N.~N.~Nefedov, A.~V.~Yagremtsev
\paper Existence of a~solution in the form of a~moving front of a~reaction-diffusion-advection problem
in~the case of balanced advection
\jour Izv. Math.
\yr 2018
\vol 82
\issue 5
\pages 984--1005
\mathnet{http://mi.mathnet.ru//eng/im8669}
\crossref{https://doi.org/10.1070/IM8669}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859381}
\zmath{https://zbmath.org/?q=an:1404.35223}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..984L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448948200005}
\elib{https://elibrary.ru/item.asp?id=36448774}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056385387}
Linking options:
  • https://www.mathnet.ru/eng/im8669
  • https://doi.org/10.1070/IM8669
  • https://www.mathnet.ru/eng/im/v82/i5/p131
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024