Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 5, Pages 1019–1075
DOI: https://doi.org/10.1070/IM8659
(Mi im8659)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the global solubility of the Cauchy problem for hyperbolic Monge–Ampére systems

D. V. Tunitsky

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
References:
Abstract: This paper is devoted to the global solubility of the Cauchy problem for a class of non-linear hyperbolic systems of two first-order equations with two independent variables. This class contains quasilinear systems. The problem has a unique maximal (with respect to inclusion) many-valued solution, which possesses a completeness property. Namely, characteristics of various families lying on such a solution and converging to the corresponding boundary point have infinite length.
Keywords: non-linear systems, quasilinear systems, Cauchy problem, many-valued solutions, characteristic uniformization.
Received: 24.01.2017
Bibliographic databases:
Document Type: Article
UDC: 517.956.35+517.957+514.763.8
MSC: 35L60, 35L45, 35A30
Language: English
Original paper language: Russian
Citation: D. V. Tunitsky, “On the global solubility of the Cauchy problem for hyperbolic Monge–Ampére systems”, Izv. Math., 82:5 (2018), 1019–1075
Citation in format AMSBIB
\Bibitem{Tun18}
\by D.~V.~Tunitsky
\paper On the global solubility of the Cauchy problem for hyperbolic Monge--Amp\'ere systems
\jour Izv. Math.
\yr 2018
\vol 82
\issue 5
\pages 1019--1075
\mathnet{http://mi.mathnet.ru//eng/im8659}
\crossref{https://doi.org/10.1070/IM8659}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859383}
\zmath{https://zbmath.org/?q=an:1406.35180}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82.1019T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448948200007}
\elib{https://elibrary.ru/item.asp?id=36448776}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056408320}
Linking options:
  • https://www.mathnet.ru/eng/im8659
  • https://doi.org/10.1070/IM8659
  • https://www.mathnet.ru/eng/im/v82/i5/p167
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:458
    Russian version PDF:71
    English version PDF:27
    References:69
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024