Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 3, Pages 451–476
DOI: https://doi.org/10.1070/IM8655
(Mi im8655)
 

This article is cited in 1 scientific paper (total in 1 paper)

Basis properties of affine Walsh systems in symmetric spaces

S. V. Astashkina, P. A. Terekhinb

a Samara National Research University
b Saratov State University
References:
Abstract: We study the basis properties of affine Walsh-type systems in symmetric spaces. We show that the ordinary Walsh system is a basis in a separable symmetric space $X$ if and only if the Boyd indices of $X$ are non-trivial, that is, $0<\alpha_X\le\beta_X<1$. In the more general situation when the generating function $f$ is the sum of a Rademacher series, we find exact conditions for the affine system $\{f_n\}_{n=0}^\infty$ to be equivalent to the Walsh system in an arbitrary separable s. s. with non-trivial Boyd indices. We also obtain sufficient conditions for the basis property. In particular, it follows from these conditions that for every $p\in(1,\infty)$ there is a function $f$ such that the affine Walsh system $\{f_n\}_{n=0}^{\infty}$ generated by $f$ is a basis in those and only those separable s. s. $X$ that satisfy $1/p<\alpha_X\le\beta_X<1$.
Keywords: basis, Walsh functions, Rademacher functions, Haar functions, symmetric space, affine Walsh-type system.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.470.2016/1.4
Russian Foundation for Basic Research 17-01-00138-а
18-01-00414-а
The work of S. V. Astashkin was carried out in the framework of performing the State Request of the Ministry of Education and Science of the Russian Federation (grant no. 1.470.2016/1.4) and partially supported by the Russian Foundation for Basic Research (grant no. 17-01-00138-a). The work of P. A. Terekhin was supported by the Russian Foundation for Basic Research (grant no. 18-01-00414-a).
Received: 23.01.2017
Bibliographic databases:
Document Type: Article
UDC: 517.982.27+517.518.3
MSC: 46E30
Language: English
Original paper language: Russian
Citation: S. V. Astashkin, P. A. Terekhin, “Basis properties of affine Walsh systems in symmetric spaces”, Izv. Math., 82:3 (2018), 451–476
Citation in format AMSBIB
\Bibitem{AstTer18}
\by S.~V.~Astashkin, P.~A.~Terekhin
\paper Basis properties of affine Walsh systems in symmetric spaces
\jour Izv. Math.
\yr 2018
\vol 82
\issue 3
\pages 451--476
\mathnet{http://mi.mathnet.ru//eng/im8655}
\crossref{https://doi.org/10.1070/IM8655}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807872}
\zmath{https://zbmath.org/?q=an:1403.46026}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..451A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437922000001}
\elib{https://elibrary.ru/item.asp?id=34940556}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049847239}
Linking options:
  • https://www.mathnet.ru/eng/im8655
  • https://doi.org/10.1070/IM8655
  • https://www.mathnet.ru/eng/im/v82/i3/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:587
    Russian version PDF:83
    English version PDF:23
    References:73
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024