Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 3, Pages 532–548
DOI: https://doi.org/10.1070/IM8653
(Mi im8653)
 

This article is cited in 3 scientific papers (total in 3 papers)

Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension of an algebraic number field

L. V. Kuz'min

National Research Centre "Kurchatov Institute", Moscow
References:
Abstract: For an algebraic number field $K$ and a prime $\ell$ we study the subgroups of global universal norms $U_{S,1}(K)$ and of everywhere locally universal norms $U_{S,2}(K)$ in the cyclotomic $\mathbb Z_\ell$-extension $K_\infty$ of $K$ in the pro-$\ell$-completion of the group of $S$-units $U_S(K)[\ell]$, where $S$ is the set of all places over $\ell$. Assuming that the $\ell$-adic Schanuel conjecture holds, we prove the finiteness of the index $(U_{S,2}(K):U_{S,1}(K))$, whence we obtain a conditional proof of a conjecture in [1] on the Iwasawa module.
We also obtain an unconditional proof of all these results in the particular case when $K$ is a Galois extension of $\mathbb Q$ with symmetric Galois group $G=S_4$, $K$ contains an imaginary quadratic field, and $\ell$ is a prime such that the decomposition subgroup of its prime divisor coincides with the Sylow $3$-subgroup of $G$.
Keywords: $S$-units, local universal norms, global universal norms, cyclotomic $\mathbb Z_\ell$-extension, Schanuel's conjecture, Iwasawa theory.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00393
This work was supported by the Russian Foundation for Basic Research (grant no. 14-01-00393).
Received: 19.01.2017
Bibliographic databases:
Document Type: Article
UDC: 511.236.3
MSC: 11R18, 11S15
Language: English
Original paper language: Russian
Citation: L. V. Kuz'min, “Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension of an algebraic number field”, Izv. Math., 82:3 (2018), 532–548
Citation in format AMSBIB
\Bibitem{Kuz18}
\by L.~V.~Kuz'min
\paper Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension
of an algebraic number field
\jour Izv. Math.
\yr 2018
\vol 82
\issue 3
\pages 532--548
\mathnet{http://mi.mathnet.ru//eng/im8653}
\crossref{https://doi.org/10.1070/IM8653}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807876}
\zmath{https://zbmath.org/?q=an:1439.11277}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..532K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437922000005}
\elib{https://elibrary.ru/item.asp?id=34940561}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049845494}
Linking options:
  • https://www.mathnet.ru/eng/im8653
  • https://doi.org/10.1070/IM8653
  • https://www.mathnet.ru/eng/im/v82/i3/p90
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:390
    Russian version PDF:40
    English version PDF:17
    References:48
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024