Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 4, Pages 647–661
DOI: https://doi.org/10.1070/IM8633
(Mi im8633)
 

This article is cited in 6 scientific papers (total in 6 papers)

Kloosterman sums with multiplicative coefficients

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We obtain several new bounds for sums of the form
$$ S_{q}(x;f)=\mathop{{\sum}'}_{n\le x}f(n)e_{q}(an^*+bn), $$
in which $q$ is a sufficiently large integer, $\sqrt{q}\,(\log{q})\ll x\le q$, $a$ and $b$ are integers with $(a,q)=1$, $e_{q}(v) = e^{2\pi iv/q}$, $f(n)$ is a multiplicative function satisfying certain conditions, $nn^*\equiv 1 \pmod{q}$, and the prime in the sum means that $(n,q)=1$. The results in this paper refine similar bounds obtained earlier by Gong and Jia.
Keywords: inverse residues, Kloosterman sums, multiplicative functions.
Funding agency Grant number
Russian Science Foundation 14-11-00433
The work was completed at the Steklov Mathematical Institute and supported by the Russian Science Foundation (grant no. 14-11-00433).
Received: 24.11.2016
Revised: 20.03.2017
Bibliographic databases:
Document Type: Article
UDC: 511.321
MSC: 11L05
Language: English
Original paper language: Russian
Citation: M. A. Korolev, “Kloosterman sums with multiplicative coefficients”, Izv. Math., 82:4 (2018), 647–661
Citation in format AMSBIB
\Bibitem{Kor18}
\by M.~A.~Korolev
\paper Kloosterman sums with multiplicative coefficients
\jour Izv. Math.
\yr 2018
\vol 82
\issue 4
\pages 647--661
\mathnet{http://mi.mathnet.ru//eng/im8633}
\crossref{https://doi.org/10.1070/IM8633}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833472}
\zmath{https://zbmath.org/?q=an:1440.11151}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..647K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443002900001}
\elib{https://elibrary.ru/item.asp?id=35276427}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053245348}
Linking options:
  • https://www.mathnet.ru/eng/im8633
  • https://doi.org/10.1070/IM8633
  • https://www.mathnet.ru/eng/im/v82/i4/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:518
    Russian version PDF:53
    English version PDF:13
    References:52
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024