Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 2, Pages 351–376
DOI: https://doi.org/10.1070/IM8623
(Mi im8623)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the basis property of the system of eigenfunctions and associated functions of a one-dimensional Dirac operator

A. M. Savchuk

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study a one-dimensional Dirac system on a finite interval. The potential (a $2\times 2$ matrix) is assumed to be complex-valued and integrable. The boundary conditions are assumed to be regular in the sense of Birkhoff. It is known that such an operator has a discrete spectrum and the system $\{\mathbf{y}_n\}_1^\infty$ of its eigenfunctions and associated functions is a Riesz basis (possibly with brackets) in $L_2\oplus L_2$. Our results concern the basis property of this system in the spaces $L_\mu\oplus L_\mu$ for $\mu\ne2$, the Sobolev spaces ${W_2^\theta\oplus W_2^\theta}$ for $\theta\in[0,1]$, and the Besov spaces $B^\theta_{p,q}\oplus B^\theta_{p,q}$.
Keywords: Dirac operator, eigenfunctions and associated functions, conditional basis, Riesz basis.
Funding agency Grant number
Russian Science Foundation 17-11-01215
This work is supported by the Russian Science Foundation under grant 17-11-01215.
Received: 26.10.2016
Revised: 19.08.2017
Bibliographic databases:
Document Type: Article
UDC: 517.984.52
MSC: 34L10, 34L40, 47E05
Language: English
Original paper language: Russian
Citation: A. M. Savchuk, “On the basis property of the system of eigenfunctions and associated functions of a one-dimensional Dirac operator”, Izv. Math., 82:2 (2018), 351–376
Citation in format AMSBIB
\Bibitem{Sav18}
\by A.~M.~Savchuk
\paper On the basis property of the system of eigenfunctions and associated functions
of a~one-dimensional Dirac operator
\jour Izv. Math.
\yr 2018
\vol 82
\issue 2
\pages 351--376
\mathnet{http://mi.mathnet.ru//eng/im8623}
\crossref{https://doi.org/10.1070/IM8623}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780048}
\zmath{https://zbmath.org/?q=an:1416.34075}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..351S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000431980900005}
\elib{https://elibrary.ru/item.asp?id=32641301}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046686448}
Linking options:
  • https://www.mathnet.ru/eng/im8623
  • https://doi.org/10.1070/IM8623
  • https://www.mathnet.ru/eng/im/v82/i2/p113
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:542
    Russian version PDF:80
    English version PDF:22
    References:85
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024