Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 5, Pages 973–984
DOI: https://doi.org/10.1070/IM8622
(Mi im8622)
 

An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals

M. I. Zelikinab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We prove a theorem on necessary conditions of Pontryagin's maximum principle type for an optimum of functionals given by multiple integrals. In contrast to the case of one-dimensional integrals, the maximum of the Pontryagin function is taken only over matrices of rank 1, not over all matrices. We give some examples.
Keywords: Pontryagin's maximum principle, multiple integrals, transversality conditions, necessary and sufficient conditions for strong or weak minima, semicontinuous extensions of variational problems, fields of extremals.
Received: 26.10.2016
Revised: 27.01.2017
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: English
Original paper language: Russian
Citation: M. I. Zelikin, “An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals”, Izv. Math., 81:5 (2017), 973–984
Citation in format AMSBIB
\Bibitem{Zel17}
\by M.~I.~Zelikin
\paper An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals
\jour Izv. Math.
\yr 2017
\vol 81
\issue 5
\pages 973--984
\mathnet{http://mi.mathnet.ru//eng/im8622}
\crossref{https://doi.org/10.1070/IM8622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3706861}
\zmath{https://zbmath.org/?q=an:1388.49025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..973Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416408800003}
\elib{https://elibrary.ru/item.asp?id=30512279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040961638}
Linking options:
  • https://www.mathnet.ru/eng/im8622
  • https://doi.org/10.1070/IM8622
  • https://www.mathnet.ru/eng/im/v81/i5/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024