|
This article is cited in 2 scientific papers (total in 2 papers)
Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone functions
A. A. Kalybaya, R. Oinarovb a Университет КИМЭП, г. Алматы, Казахстан
b L. N. Gumilev Eurasian National University, Astana
Abstract:
We consider weighted bounds for quasilinear integral operators of the form
$$
\mathcal{K}^+f(x)=\biggl(\int_{0}^{x}\biggl|w(t)\int_{t}^{x} K(s,t)f(s)\,ds\biggr|^{r}\,dt\biggr)^{{1}/{r}}
$$
from $L_{p,v}$ to $L_{q,u}$ on the set on non-negative and non-negative monotone functions $f$, where $u$, $v$ and $w$ are weight functions. Under the assumption that $0<r<\infty$, we obtain necessary and sufficient conditions for the validity of these bounds on the set of non-negative functions for the values of the parameters satisfying the conditions $1\leqslant p\leqslant q<\infty$ and $0<q<p<\infty$, $p\geqslant 1$, and also on the cones of non-negative non-increasing and non-negative non-decreasing functions for $0<q<\infty$ and $1\leqslant p<\infty$. Here it is assumed only that $K{(\,\cdot\,,\cdot\,)}\geqslant 0$. However, the criteria we obtain involve the norm of a linear integral operator from $L_{p,v}$ to $L_{r,w}$ with kernel $K{(\,\cdot\,,\cdot\,)}$.
Keywords:
integral operator, inequality of Hardy type, weight function, kernel, monotone function.
Received: 07.10.2016 Revised: 25.03.2017
Citation:
A. A. Kalybay, R. Oinarov, “Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone functions”, Izv. Math., 83:2 (2019), 251–272
Linking options:
https://www.mathnet.ru/eng/im8613https://doi.org/10.1070/IM8613 https://www.mathnet.ru/eng/im/v83/i2/p61
|
|