Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 2, Pages 251–272
DOI: https://doi.org/10.1070/IM8613
(Mi im8613)
 

This article is cited in 2 scientific papers (total in 2 papers)

Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone functions

A. A. Kalybaya, R. Oinarovb

a Университет КИМЭП, г. Алматы, Казахстан
b L. N. Gumilev Eurasian National University, Astana
References:
Abstract: We consider weighted bounds for quasilinear integral operators of the form
$$ \mathcal{K}^+f(x)=\biggl(\int_{0}^{x}\biggl|w(t)\int_{t}^{x} K(s,t)f(s)\,ds\biggr|^{r}\,dt\biggr)^{{1}/{r}} $$
from $L_{p,v}$ to $L_{q,u}$ on the set on non-negative and non-negative monotone functions $f$, where $u$, $v$ and $w$ are weight functions. Under the assumption that $0<r<\infty$, we obtain necessary and sufficient conditions for the validity of these bounds on the set of non-negative functions for the values of the parameters satisfying the conditions $1\leqslant p\leqslant q<\infty$ and $0<q<p<\infty$, $p\geqslant 1$, and also on the cones of non-negative non-increasing and non-negative non-decreasing functions for $0<q<\infty$ and $1\leqslant p<\infty$. Here it is assumed only that $K{(\,\cdot\,,\cdot\,)}\geqslant 0$. However, the criteria we obtain involve the norm of a linear integral operator from $L_{p,v}$ to $L_{r,w}$ with kernel $K{(\,\cdot\,,\cdot\,)}$.
Keywords: integral operator, inequality of Hardy type, weight function, kernel, monotone function.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP05130975
This work was financially supported by the Ministry of Education and Science of the Republic of Kazakhstan, grant no. AP05130975 in the area ‘Scientific research in the natural sciences’.
Received: 07.10.2016
Revised: 25.03.2017
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 26D10, 47B38
Language: English
Original paper language: Russian
Citation: A. A. Kalybay, R. Oinarov, “Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone functions”, Izv. Math., 83:2 (2019), 251–272
Citation in format AMSBIB
\Bibitem{KalOin19}
\by A.~A.~Kalybay, R.~Oinarov
\paper Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions
\jour Izv. Math.
\yr 2019
\vol 83
\issue 2
\pages 251--272
\mathnet{http://mi.mathnet.ru//eng/im8613}
\crossref{https://doi.org/10.1070/IM8613}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3942798}
\zmath{https://zbmath.org/?q=an:1453.26016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..251K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000466369800004}
\elib{https://elibrary.ru/item.asp?id=37180423}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066319922}
Linking options:
  • https://www.mathnet.ru/eng/im8613
  • https://doi.org/10.1070/IM8613
  • https://www.mathnet.ru/eng/im/v83/i2/p61
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025