Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 4, Pages 734–770
DOI: https://doi.org/10.1070/IM8610
(Mi im8610)
 

This article is cited in 6 scientific papers (total in 6 papers)

Universal adic approximation, invariant measures and scaled entropy

A. M. Vershikabc, P. B. Zatitskiidec

a St. Petersburg State University, Department of Mathematics and Mechanics
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
d Ècole Normale Supérieure, Département de mathématiques et applications, Paris
e Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
References:
Abstract: We define an infinite graded graph of ordered pairs and a canonical action of the group $\mathbb{Z}$ (the adic action) and of the infinite sum of groups of order two $\mathcal{D}=\sum_1^{\infty} \mathbb{Z}/2\mathbb{Z}$ on the path space of the graph. It is proved that these actions are universal for both groups in the following sense: every ergodic action of these groups with invariant measure and binomial generator, multiplied by a special action (the ‘odometer’), is metrically isomorphic to the canonical adic action on the path space of the graph with a central measure. We consider a series of related problems.
Keywords: graph of ordered pairs, universal action, adic transformation, scaled entropy.
Funding agency Grant number
Russian Science Foundation 14-11-00581
This research was financially supported by the Russian Science Foundation under grant no.~14-11-00581).
Received: 02.10.2016
Bibliographic databases:
Document Type: Article
UDC: 517.518
MSC: Primary 37A35; Secondary 28D05, 37A05, 37A50, 60G99
Language: English
Original paper language: Russian
Citation: A. M. Vershik, P. B. Zatitskii, “Universal adic approximation, invariant measures and scaled entropy”, Izv. Math., 81:4 (2017), 734–770
Citation in format AMSBIB
\Bibitem{VerZat17}
\by A.~M.~Vershik, P.~B.~Zatitskii
\paper Universal adic approximation, invariant measures and scaled entropy
\jour Izv. Math.
\yr 2017
\vol 81
\issue 4
\pages 734--770
\mathnet{http://mi.mathnet.ru//eng/im8610}
\crossref{https://doi.org/10.1070/IM8610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3682784}
\zmath{https://zbmath.org/?q=an:1382.37009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..734V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411425600003}
\elib{https://elibrary.ru/item.asp?id=30357744}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029726975}
Linking options:
  • https://www.mathnet.ru/eng/im8610
  • https://doi.org/10.1070/IM8610
  • https://www.mathnet.ru/eng/im/v81/i4/p68
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024