Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 2, Pages 377–406
DOI: https://doi.org/10.1070/IM8575
(Mi im8575)
 

Integrals of Bessel processes and multi-dimensional Ornstein–Uhlenbeck processes: exact asymptotics for $L^p$-functionals

V. R. Fatalov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove results on exact asymptotics of the expectations $\mathbf{E}_a \exp \bigl(-\int_0^T \xi_q^p(t) \,dt \bigr)$, $\mathbf{E}_a \bigl[ \exp \bigl(-\int_0^T \xi_q^p(t) \,dt \bigr) \bigm| \xi_q(T)=b \bigr]$ as $T\to\infty$ for $p>0$, $a\geqslant 0$, $b\geqslant 0$, where $\xi_q(t)$, $t\geqslant 0$, is a Bessel process of order $q\geqslant-1/2$. We also find exact asymptotics of the probabilities $\mathbf{P} \bigl\{ \int_0^1 \sum_{k=1}^n |Y_k(t)|^p \,dt \leqslant \varepsilon^p \bigr\}$, $\mathbf{P} \bigl\{ \int_0^1 \bigl[ \sum_{k=1}^n Y_k^2(t) \bigr]^{p/2} \,dt \leqslant \varepsilon^p \bigr\}$ as $\varepsilon\to 0$, where $\mathbf{Y}(t)=(Y_1(t),\dots, Y_n(t))$, $t\geqslant 0$, is the $n$-dimensional non-stationary Ornstein–Uhlenbeck process with a parameter $\gamma=(\gamma_1, \dots, \gamma_n)$ starting at the origin. We also obtain a number of other results. Numerical values of the asymptotics are given for $p=1$, $p=2$.
Keywords: Bessel processes, Feynman–Kac formula, multi-dimensional Wiener process, Girsanov's theorem, small deviations, Schrödinger operator, Airy function, Bessel function.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00050
This paper was written with the support of the Russian Foundation for Basic Research (grant no. 11-01-00050).
Received: 21.05.2016
Revised: 12.08.2016
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: 60F25, 60J25
Language: English
Original paper language: Russian
Citation: V. R. Fatalov, “Integrals of Bessel processes and multi-dimensional Ornstein–Uhlenbeck processes: exact asymptotics for $L^p$-functionals”, Izv. Math., 82:2 (2018), 377–406
Citation in format AMSBIB
\Bibitem{Fat18}
\by V.~R.~Fatalov
\paper Integrals of Bessel processes and multi-dimensional Ornstein--Uhlenbeck processes:
exact asymptotics for $L^p$-functionals
\jour Izv. Math.
\yr 2018
\vol 82
\issue 2
\pages 377--406
\mathnet{http://mi.mathnet.ru//eng/im8575}
\crossref{https://doi.org/10.1070/IM8575}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780049}
\zmath{https://zbmath.org/?q=an:1404.60045}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..377F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000431980900006}
\elib{https://elibrary.ru/item.asp?id=32641302}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046636646}
Linking options:
  • https://www.mathnet.ru/eng/im8575
  • https://doi.org/10.1070/IM8575
  • https://www.mathnet.ru/eng/im/v82/i2/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:493
    Russian version PDF:69
    English version PDF:38
    References:72
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024