Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 2, Pages 359–390
DOI: https://doi.org/10.1070/IM8542
(Mi im8542)
 

This article is cited in 3 scientific papers (total in 3 papers)

The phase-integral method in a problem of singular perturbation theory

S. A. Stepin, V. V. Fufaev

Lomonosov Moscow State University
References:
Abstract: This paper is devoted to the development of the phase-integral method as applied to a boundary-value problem modelling the passage from discrete to continuous spectrum in the non-selfadjoint case. Our aim is to study the patterns and features of the asymptotic distribution of eigenvalues of the problem and to describe the topologically distinct types of spectrum configurations in the quasiclassical limit.
Keywords: phase integral, WKB-approximation, Bohr–Sommerfeld–Maslov quantization rule, quasiclassical asymptotics.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00117-a
This paper was written with the financial support of the Russian Foundation for Basic Research (grant no. 16-01-00117-a).
Received: 10.03.2016
Revised: 04.10.2016
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: S. A. Stepin, V. V. Fufaev, “The phase-integral method in a problem of singular perturbation theory”, Izv. Math., 81:2 (2017), 359–390
Citation in format AMSBIB
\Bibitem{SteFuf17}
\by S.~A.~Stepin, V.~V.~Fufaev
\paper The phase-integral method in a~problem of singular perturbation theory
\jour Izv. Math.
\yr 2017
\vol 81
\issue 2
\pages 359--390
\mathnet{http://mi.mathnet.ru//eng/im8542}
\crossref{https://doi.org/10.1070/IM8542}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3629025}
\zmath{https://zbmath.org/?q=an:1367.34106}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..359S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401127400005}
\elib{https://elibrary.ru/item.asp?id=28931379}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019674566}
Linking options:
  • https://www.mathnet.ru/eng/im8542
  • https://doi.org/10.1070/IM8542
  • https://www.mathnet.ru/eng/im/v81/i2/p129
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024