Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 6, Pages 1080–1094
DOI: https://doi.org/10.1070/IM8529
(Mi im8529)
 

This article is cited in 9 scientific papers (total in 9 papers)

Approximation by sums of shifts of a single function on the circle

P. A. Borodin

Lomonosov Moscow State University
References:
Abstract: We study approximation properties of the sums $\sum_{k=1}^nf(t-a_k)$ of shifts of a single function $f$ in real spaces $L_p(\mathbb{T})$ and $C(\mathbb{T})$ on the circle $\mathbb{T}=[0,2\pi)$, and also in complex spaces of functions analytic in the unit disc. We obtain sufficient conditions in terms of the trigonometric Fourier coefficients of $f$ for these sums to be dense in the corresponding subspaces of functions with zero mean. We investigate the accuracy of these conditions. We also suggest a simple algorithm for the approximation by sums of plus or minus shifts of one particular function in $L_2(\mathbb{T})$ and obtain bounds for the rate of approximation.
Keywords: approximation, sums of shifts, Fourier coefficients, semigroup.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00510
15-01-08335
Dynasty Foundation
This paper was written with the financial support of RFBR (grants nos. 14-01-00510, 15-01-08335) and the Dmitry Zimin Dynasty Foundation.
Received: 18.02.2016
Revised: 21.08.2016
Bibliographic databases:
UDC: 517.518.843+517.982.256
MSC: 41A30, 41A25
Language: English
Original paper language: Russian
Citation: P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094
Citation in format AMSBIB
\Bibitem{Bor17}
\by P.~A.~Borodin
\paper Approximation by sums of shifts of a~single function on the circle
\jour Izv. Math.
\yr 2017
\vol 81
\issue 6
\pages 1080--1094
\mathnet{http://mi.mathnet.ru//eng/im8529}
\crossref{https://doi.org/10.1070/IM8529}
\zmath{https://zbmath.org/?q=an:1384.41016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81.1080B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418891300002}
\elib{https://elibrary.ru/item.asp?id=30737827}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040971331}
Linking options:
  • https://www.mathnet.ru/eng/im8529
  • https://doi.org/10.1070/IM8529
  • https://www.mathnet.ru/eng/im/v81/i6/p23
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:784
    Russian version PDF:112
    English version PDF:26
    References:85
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024