Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 1, Pages 140–185
DOI: https://doi.org/10.1070/IM8507
(Mi im8507)
 

This article is cited in 29 scientific papers (total in 29 papers)

Solubility of unsteady equations of multi-component viscous compressible fluids

A. E. Mamontov, D. A. Prokudin

Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We consider an initial-boundary value problem describing unsteady barotropic motions of multi-component mixtures of viscous compressible fluids in a bounded three-dimensional domain. The material derivative operator is assumed to be common for all components and determined by the average velocity of the mixture, but all other terms contain the separate velocities of the components. The pressure is assumed to be common and dependent on the total density. We impose no simplifying assumptions (in particular, on the structure of the viscosity matrix) besides those stated above and thus preserve all the terms in the equations that naturally extend the Navier–Stokes model of motions of one-component media. We prove the existence of weak generalized solutions of the initial-boundary value problem.
Keywords: existence theorem, unsteady boundary-value problem, viscous compressible fluid, homogeneous mixture with multiple velocities, effective viscous flux.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-08275
This paper was written with the support of the Russian Foundation for Basic Research (grant no. 15-01-08275).
Received: 13.01.2016
Revised: 17.07.2017
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: English
Original paper language: Russian
Citation: A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izv. Math., 82:1 (2018), 140–185
Citation in format AMSBIB
\Bibitem{MamPro18}
\by A.~E.~Mamontov, D.~A.~Prokudin
\paper Solubility of unsteady equations of multi-component viscous compressible fluids
\jour Izv. Math.
\yr 2018
\vol 82
\issue 1
\pages 140--185
\mathnet{http://mi.mathnet.ru/eng/im8507}
\crossref{https://doi.org/10.1070/IM8507}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3749599}
\zmath{https://zbmath.org/?q=an:1423.76385}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..140M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427245900006}
\elib{https://elibrary.ru/item.asp?id=32428081}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043687509}
Linking options:
  • https://www.mathnet.ru/eng/im8507
  • https://doi.org/10.1070/IM8507
  • https://www.mathnet.ru/eng/im/v82/i1/p151
  • This publication is cited in the following 29 articles:
    1. R. V. Brizitskii, “Boundary Value and Control Problems for Mass Transfer Equations with Variable Coefficients”, J Dyn Control Syst, 2024  crossref
    2. Evgenii S. Baranovskii, Roman V. Brizitskii, Zhanna Yu. Saritskaia, “Optimal control problems for the reaction–diffusion–convection equation with variable coefficients”, Nonlinear Analysis: Real World Applications, 75 (2024), 103979  crossref  mathscinet  zmath
    3. D. A. Zakora, “Spectral Properties of Operators in the Problem on Normal Oscillations of a Mixture of Viscous Compressible Fluids”, J Math Sci, 2024  crossref
    4. Evgenii S. Baranovskii, Roman V. Brizitskii, Zhanna Yu. Saritskaia, “Boundary Value and Control Problems for the Stationary Heat Transfer Model with Variable Coefficients”, J Dyn Control Syst, 30:3 (2024)  crossref
    5. R. V. Brizitskii, “Boundary Value and Control Problems for the Stationary Magnetic Hydrodynamic Equations of Heat Conducting Fluid with Variable Coefficients”, J Dyn Control Syst, 30:4 (2024)  crossref
    6. Evgenii S. Baranovskii, Roman V. Brizitskii, Zhanna Yu. Saritskaia, “Multiplicative Control Problem for the Stationary Mass Transfer Model with Variable Coefficients”, Appl Math Optim, 90:2 (2024)  crossref
    7. D. A. Zakora, “Spektralnye svoistva operatorov v zadache o normalnykh kolebaniyakh smesi vyazkikh szhimaemykh zhidkostei”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 73–97  mathnet  crossref
    8. D. A. Zakora, “Zadacha o malykh dvizheniyakh smesi vyazkikh szhimaemykh zhidkostei”, Sib. elektron. matem. izv., 20:2 (2023), 1552–1589  mathnet  crossref
    9. R. V. Brizitskii, Zh. Yu. Saritskaia, “Analysis of inhomogeneous boundary value problems for generalized Boussinesq model of mass transfer”, J. Dyn. Control Syst., 29:4 (2023), 1809–1828  crossref  mathscinet  zmath
    10. D. A. Zakora, “Spectral properties of the operator in the problem of oscillations in a mixture of viscous compressible fluids”, Diff Equat, 59:4 (2023), 473  crossref  crossref  mathscinet  zmath
    11. Zh. Yu. Saritskaya, “Kraevaya zadacha dlya nelineinykh uravnenii massoperenosa s usloviem Dirikhle”, Sib. elektron. matem. izv., 19:1 (2022), 360–370  mathnet  crossref  mathscinet
    12. G. Alekseev, R. Brizitskii, “Theoretical analysis of boundary value problems for generalized Boussinesq model of mass transfer with variable coefficients”, Symmetry, 14:12 (2022), 2580  crossref
    13. M. Bulicek, A. Jüngel, M. Pokorný, N. Zamponi, “Existence analysis of a stationary compressible fluid model for heat-conducting and chemically reacting mixtures”, J. Math. Phys., 63:5 (2022), 051501  crossref  mathscinet
    14. Axmann S., Pokorny M., “Steady Solutions to a Model of Compressible Chemically Reacting Fluid With High Density”, Math. Meth. Appl. Sci., 44:8 (2021), 6422–6447  crossref  mathscinet  isi  scopus
    15. R. V. Brizitskii, Zh. Yu. Saritskaia, “Multiplicative control problems for nonlinear reaction-diffusion-convection model”, J. Dyn. Control Syst., 27:2 (2021), 379–402  crossref  mathscinet  zmath  isi  scopus
    16. A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of the three-dimensional motion of two-component viscous compressible heat-conducting fluids”, Izv. Math., 85:4 (2021), 755–812  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    17. A. E. Mamontov, D. A. Prokudin, “Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids”, J. Appl. Industr. Math., 15:1 (2021), 50–61  mathnet  crossref  crossref  elib
    18. D. A. Prokudin, “Existence of weak solutions to the problem on three-dimensional steady heat-conductive motions of compressible viscous multicomponent mixtures”, Siberian Math. J., 62:5 (2021), 895–907  mathnet  crossref  crossref  isi  elib
    19. A E Mamontov, D A Prokudin, “Global unique solvability of the initial-boundary value problem for one-dimensional barotropic equations of viscous compressible bifluids”, J. Phys.: Conf. Ser., 1666:1 (2020), 012032  crossref
    20. Zh Saritskaia, P Savinov, “Multiplicative boundary control problems for nonlinear reaction-diffusion-convection model”, J. Phys.: Conf. Ser., 1666:1 (2020), 012045  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:729
    Russian version PDF:184
    English version PDF:34
    References:80
    First page:26
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025