Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 1, Pages 140–185
DOI: https://doi.org/10.1070/IM8507
(Mi im8507)
 

This article is cited in 29 scientific papers (total in 29 papers)

Solubility of unsteady equations of multi-component viscous compressible fluids

A. E. Mamontov, D. A. Prokudin

Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We consider an initial-boundary value problem describing unsteady barotropic motions of multi-component mixtures of viscous compressible fluids in a bounded three-dimensional domain. The material derivative operator is assumed to be common for all components and determined by the average velocity of the mixture, but all other terms contain the separate velocities of the components. The pressure is assumed to be common and dependent on the total density. We impose no simplifying assumptions (in particular, on the structure of the viscosity matrix) besides those stated above and thus preserve all the terms in the equations that naturally extend the Navier–Stokes model of motions of one-component media. We prove the existence of weak generalized solutions of the initial-boundary value problem.
Keywords: existence theorem, unsteady boundary-value problem, viscous compressible fluid, homogeneous mixture with multiple velocities, effective viscous flux.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-08275
This paper was written with the support of the Russian Foundation for Basic Research (grant no. 15-01-08275).
Received: 13.01.2016
Revised: 17.07.2017
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2018, Volume 82, Issue 1, Pages 151–197
DOI: https://doi.org/10.4213/im8507
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: English
Original paper language: Russian
Citation: A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izv. RAN. Ser. Mat., 82:1 (2018), 151–197; Izv. Math., 82:1 (2018), 140–185
Citation in format AMSBIB
\Bibitem{MamPro18}
\by A.~E.~Mamontov, D.~A.~Prokudin
\paper Solubility of unsteady equations of multi-component viscous compressible fluids
\jour Izv. RAN. Ser. Mat.
\yr 2018
\vol 82
\issue 1
\pages 151--197
\mathnet{http://mi.mathnet.ru/im8507}
\crossref{https://doi.org/10.4213/im8507}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3749599}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..140M}
\elib{https://elibrary.ru/item.asp?id=32428081}
\transl
\jour Izv. Math.
\yr 2018
\vol 82
\issue 1
\pages 140--185
\crossref{https://doi.org/10.1070/IM8507}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427245900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043687509}
Linking options:
  • https://www.mathnet.ru/eng/im8507
  • https://doi.org/10.1070/IM8507
  • https://www.mathnet.ru/eng/im/v82/i1/p151
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:660
    Russian version PDF:174
    English version PDF:24
    References:67
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024