Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 43, Issue 1, Pages 1–29
DOI: https://doi.org/10.1070/IM1994v043n01ABEH001550
(Mi im849)
 

This article is cited in 1 scientific paper (total in 1 paper)

Vector-valued duality for modules over Banach algebras

A. I. Loginov, V. S. Shulman
References:
Abstract: Pairs of topological modules $\mathcal X$, $\mathcal Y$ over algebras $\mathcal A$, $\mathcal B$ are considered that are in duality, with values in an ($\mathcal A$, $\mathcal B$)-bimodule $\mathcal Z$. An important example: if an arbitrary $\mathcal A$-module $\mathcal Z$ is regarded as an ($\mathcal A$, $\mathcal B$)-bimodule, where $\mathcal B=\operatorname{Hom}_\mathcal A(\mathcal Z,\mathcal Z)$, then for any $\mathcal A$-module $\mathcal X$ the pair $\mathcal X$, $\operatorname{Hom}_\mathcal A(\mathcal X,\mathcal Z)$ is in a natural $\mathcal Z$-duality. Conditions on the ($\mathcal A$, $\mathcal B$)-bimodule $\mathcal Z$ are found under which the bipolar theorem and certain other results in convex analysis carry over to $\mathcal Z$-valued duality. In several cases this enables one to describe the structure of the closed submodules and (in terms of graphs) the closed homomorphisms. Among the applications are results on commutation systems, unbounded derivations, left Hilbert algebras, spaces with an indefinite metric, and multipliers of $C^*$-algebras.
Received: 10.07.1990
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1993, Volume 57, Issue 4, Pages 3–35
Bibliographic databases:
UDC: 517.98
MSC: Primary 46H25, 46A20; Secondary 46C20, 46L57, 46C05
Language: English
Original paper language: Russian
Citation: A. I. Loginov, V. S. Shulman, “Vector-valued duality for modules over Banach algebras”, Izv. RAN. Ser. Mat., 57:4 (1993), 3–35; Russian Acad. Sci. Izv. Math., 43:1 (1994), 1–29
Citation in format AMSBIB
\Bibitem{LogShu93}
\by A.~I.~Loginov, V.~S.~Shulman
\paper Vector-valued duality for modules over Banach algebras
\jour Izv. RAN. Ser. Mat.
\yr 1993
\vol 57
\issue 4
\pages 3--35
\mathnet{http://mi.mathnet.ru/im849}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1243349}
\zmath{https://zbmath.org/?q=an:0833.46042}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..43....1L}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 43
\issue 1
\pages 1--29
\crossref{https://doi.org/10.1070/IM1994v043n01ABEH001550}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PQ58000001}
Linking options:
  • https://www.mathnet.ru/eng/im849
  • https://doi.org/10.1070/IM1994v043n01ABEH001550
  • https://www.mathnet.ru/eng/im/v57/i4/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:282
    Russian version PDF:105
    English version PDF:7
    References:56
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024