Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 1, Pages 31–60
DOI: https://doi.org/10.1070/IM8484
(Mi im8484)
 

Morera-type theorems in the hyperbolic disc

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University
References:
Abstract: Let $G$ be the group of conformal automorphisms of the unit disc $\mathbb{D}=\{z\in\mathbb{C}\colon |z|<1\}$. We study the problem of the holomorphicity of functions $f$ on $\mathbb{D}$ satisfying the equation
$$ \int_{\gamma_{\varrho}} f(g (z))\, dz=0 \quad \forall \, g\in G, $$
where $\gamma_{\varrho}=\{z\in\mathbb{C}\colon |z|=\varrho\}$ and $\rho\in (0,1)$ is fixed. We find exact conditions for holomorphicity in terms of the boundary behaviour of such functions. A by-product of our work is a new proof of the Berenstein–Pascuas two-radii theorem.
Keywords: holomorphicity, conformal automorphism, boundary behaviour.
Received: 05.12.2015
Revised: 18.09.2016
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2018, Volume 82, Issue 1, Pages 34–64
DOI: https://doi.org/10.4213/im8484
Bibliographic databases:
Document Type: Article
UDC: 517.444
Language: English
Original paper language: Russian
Citation: V. V. Volchkov, Vit. V. Volchkov, “Morera-type theorems in the hyperbolic disc”, Izv. RAN. Ser. Mat., 82:1 (2018), 34–64; Izv. Math., 82:1 (2018), 31–60
Citation in format AMSBIB
\Bibitem{VolVol18}
\by V.~V.~Volchkov, Vit. V. Volchkov
\paper Morera-type theorems in the hyperbolic disc
\jour Izv. RAN. Ser. Mat.
\yr 2018
\vol 82
\issue 1
\pages 34--64
\mathnet{http://mi.mathnet.ru/im8484}
\crossref{https://doi.org/10.4213/im8484}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3749596}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82...31V}
\elib{https://elibrary.ru/item.asp?id=32428077}
\transl
\jour Izv. Math.
\yr 2018
\vol 82
\issue 1
\pages 31--60
\crossref{https://doi.org/10.1070/IM8484}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427245900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043708691}
Linking options:
  • https://www.mathnet.ru/eng/im8484
  • https://doi.org/10.1070/IM8484
  • https://www.mathnet.ru/eng/im/v82/i1/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Èçâåñòèÿ Ðîññèéñêîé àêàäåìèè íàóê. Ñåðèÿ ìàòåìàòè÷åñêàÿ Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:539
    Russian version PDF:72
    English version PDF:16
    References:66
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024