Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 3, Pages 602–622
DOI: https://doi.org/10.1070/IM8463
(Mi im8463)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach

I. S. Rezvyakova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We consider in detail Selberg's method for proving that under certain natural assumptions, a positive proportion of the non-trivial zeros of a linear combination of L-functions from the Selberg class lie on the critical line. As an example, we provide all the ingredients necessary to prove this result in the case of a linear combination of L-functions of degree two attached to automorphic forms.
Keywords: Riemann hypothesis, zeros on the critical line, Selberg class, density theorems, Hecke L-functions.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: 22.10.2015
Bibliographic databases:
Document Type: Article
UDC: 511
MSC: 11M41, 11M26
Language: English
Original paper language: Russian
Citation: I. S. Rezvyakova, “On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach”, Izv. Math., 80:3 (2016), 602–622
Citation in format AMSBIB
\Bibitem{Rez16}
\by I.~S.~Rezvyakova
\paper On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach
\jour Izv. Math.
\yr 2016
\vol 80
\issue 3
\pages 602--622
\mathnet{http://mi.mathnet.ru//eng/im8463}
\crossref{https://doi.org/10.1070/IM8463}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507391}
\zmath{https://zbmath.org/?q=an:1350.11083}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..602R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384880300008}
\elib{https://elibrary.ru/item.asp?id=26414231}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987600895}
Linking options:
  • https://www.mathnet.ru/eng/im8463
  • https://doi.org/10.1070/IM8463
  • https://www.mathnet.ru/eng/im/v80/i3/p151
  • Related presentations:
    This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:736
    Russian version PDF:271
    English version PDF:31
    References:64
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024