Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 6, Pages 1231–1241
DOI: https://doi.org/10.1070/IM8447
(Mi im8447)
 

This article is cited in 15 scientific papers (total in 15 papers)

Simple right alternative superalgebras of Abelian type whose even part is a field

S. V. Pchelintsev, O. V. Shashkov

Financial University under the Government of the Russian Federation, Moscow
References:
Abstract: We study central simple unital right alternative superalgebras $B=\Gamma\oplus M$ of Abelian type of arbitrary dimension whose even part $\Gamma$ is a field. We prove that every such superalgebra $B=\Gamma\oplus M$, except for the superalgebra $B_{1|2}$, is a double, that is, the odd part can be represented in the form $M=\Gamma x$ for a suitable $x$.
If the generating element $x$ commutes with the even part $\Gamma$, then $B$ is isomorphic to a twisted superalgebra of vector type $B(\Gamma,D,\gamma)$ introduced by Shestakov [1], [2]. But if $x$ commutes with the odd part $M$, then $B$ is isomorphic to a superalgebra $B(\Gamma, {}^*,R_\omega)$ introduced in [3] and called an $\omega$-double.
We prove that if the ground field is algebraically closed, then $B$ is isomorphic to one of the superalgebras $B_{1|2}$, $B(\Gamma,D,\gamma)$, $B(\Gamma,{}^*,R_\omega)$.
Keywords: simple right alternative superalgebra, superalgebra of Abelian type.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00014
This research was supported by the Russian Foundation for Basic Research (grant no. 14-01-00014).
Received: 01.10.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2016, Volume 80, Issue 6, Pages 247–257
DOI: https://doi.org/10.4213/im8447
Bibliographic databases:
Document Type: Article
UDC: 512.554.5
MSC: 17A70, 17D15
Language: English
Original paper language: Russian
Citation: S. V. Pchelintsev, O. V. Shashkov, “Simple right alternative superalgebras of Abelian type whose even part is a field”, Izv. RAN. Ser. Mat., 80:6 (2016), 247–257; Izv. Math., 80:6 (2016), 1231–1241
Citation in format AMSBIB
\Bibitem{PchSha16}
\by S.~V.~Pchelintsev, O.~V.~Shashkov
\paper Simple right alternative superalgebras of Abelian type whose even part is a~field
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 6
\pages 247--257
\mathnet{http://mi.mathnet.ru/im8447}
\crossref{https://doi.org/10.4213/im8447}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588821}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80.1231P}
\elib{https://elibrary.ru/item.asp?id=27484932}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 6
\pages 1231--1241
\crossref{https://doi.org/10.1070/IM8447}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393621500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011659399}
Linking options:
  • https://www.mathnet.ru/eng/im8447
  • https://doi.org/10.1070/IM8447
  • https://www.mathnet.ru/eng/im/v80/i6/p247
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:370
    Russian version PDF:42
    English version PDF:13
    References:57
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024