Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 5, Pages 910–953
DOI: https://doi.org/10.1070/IM8436
(Mi im8436)
 

This article is cited in 2 scientific papers (total in 2 papers)

The geometry of polynomial identities

C. Procesi

Mathematics Department, University of Rome "La Sapienza", Italy
References:
Abstract: In this paper we stress the role of invariant theory and in particular the role of varieties of semisimple representations in the theory of polynomial identities of an associative algebra.
In particular, using this tool, we show that two PI-equivalent finite-dimensional fundamental algebras (see Definition 2.19) have the same semisimple part. Moreover, we carry out some explicit computations of codimensions and cocharacters, extending work of Berele [8] and Kanel-Belov [6], [7].
Keywords: polynomial identities, fundamental algebras, invariant theory.
Received: 01.08.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2016, Volume 80, Issue 5, Pages 103–152
DOI: https://doi.org/10.4213/im8436
Bibliographic databases:
Document Type: Article
UDC: 512.552.4+512.547.212
MSC: 15A24, 16R10, 16R30
Language: English
Original paper language: Russian
Citation: C. Procesi, “The geometry of polynomial identities”, Izv. Math., 80:5 (2016), 910–953
Citation in format AMSBIB
\Bibitem{Pro16}
\by C.~Procesi
\paper The geometry of polynomial identities
\jour Izv. Math.
\yr 2016
\vol 80
\issue 5
\pages 910--953
\mathnet{http://mi.mathnet.ru//eng/im8436}
\crossref{https://doi.org/10.1070/IM8436}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588807}
\zmath{https://zbmath.org/?q=an:06662665}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..910P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391093500005}
\elib{https://elibrary.ru/item.asp?id=27349857}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994709525}
Linking options:
  • https://www.mathnet.ru/eng/im8436
  • https://doi.org/10.1070/IM8436
  • https://www.mathnet.ru/eng/im/v80/i5/p103
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:484
    Russian version PDF:148
    English version PDF:5
    References:62
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024