Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 4, Pages 665–677
DOI: https://doi.org/10.1070/IM8429
(Mi im8429)
 

This article is cited in 27 scientific papers (total in 27 papers)

Cyclic covers that are not stably rational

J.-L. Colliot-Thélèneab, A. Pirutkac

a Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
b Université de Paris-Sud Mathematiques, Département de Mathématique
c Ècole Polytechnique CNRS, Centre de Mathématiques Appliquées
References:
Abstract: Using methods developed by Kollár, Voisin, ourselves and Totaro, we prove that a cyclic cover of $\mathbb P_{\mathbb C}^n$, $n\geqslant 3$, of prime degree $p$, ramified along a very general hypersurface $f(x_0,\dots , x_n)=0$ of degree $mp$, is not stably rational if $m(p-1) <n+1\leqslant mp$. In dimension 3 we recover double covers of $\mathbb P^3_{\mathbb C}$ ramified along a very general surface of degree 4 (Voisin) and double covers of $\mathbb P^3_{\mathbb C}$ ramified along a very general surface of degree 6 (Beauville). We also find double covers of $\mathbb P^4_{\mathbb C}$ ramified along a very general hypersurface of degree 6. This method also enables us to produce examples over a number field.
Keywords: stable rationality, Chow group of zero-cycles, cyclic covers.
Received: 06.07.2015
Bibliographic databases:
Document Type: Article
UDC: 512.752
Language: English
Original paper language: Russian
Citation: J.-L. Colliot-Thélène, A. Pirutka, “Cyclic covers that are not stably rational”, Izv. Math., 80:4 (2016), 665–677
Citation in format AMSBIB
\Bibitem{ColPir16}
\by J.-L.~Colliot-Th\'el\`ene, A.~Pirutka
\paper Cyclic covers that are not stably rational
\jour Izv. Math.
\yr 2016
\vol 80
\issue 4
\pages 665--677
\mathnet{http://mi.mathnet.ru//eng/im8429}
\crossref{https://doi.org/10.1070/IM8429}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535357}
\zmath{https://zbmath.org/?q=an:06640626}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..665C}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384882700003}
\elib{https://elibrary.ru/item.asp?id=26414236}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987615755}
Linking options:
  • https://www.mathnet.ru/eng/im8429
  • https://doi.org/10.1070/IM8429
  • https://www.mathnet.ru/eng/im/v80/i4/p35
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024