Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 43, Issue 2, Pages 311–329
DOI: https://doi.org/10.1070/IM1994v043n02ABEH001566
(Mi im842)
 

This article is cited in 29 scientific papers (total in 29 papers)

On approximation of functions on the sphere

Kh. P. Rustamov
References:
Abstract: Let $S^n$ be the unit sphere in $\mathbf R^{n+1}$ ($n\geqslant 1$) with center at the origin of coordinates, and let $\|*\|_p$ be the norm in the space $L_p(S^n)$, $1\leqslant p\leqslant\infty$ $(L_\infty(S^n)\equiv C(S^n))$. Problems posed by Butzer, Johnen [4], and Wehrens (Approximationstheorie auf der Einheitskugel in $R^3$. Legendre-Transformationsmethoden und Anwendungen, Forschungsberichte Landes Nordrhein-Westfalen No. 3090, 1981) are solved; namely, a direct theorem on best approximation is proved for the modulus of smoothness of arbitrary (fractional) order $r$ $(r>0)$
$$ \omega_r(f;\tau)_p\colon=\sup_{0<t\leqslant\tau}\Big\|(E-\operatorname{sh}_t)^{r/2}f\Big\|_p,\qquad 0<\tau<\pi, $$
where $\operatorname{sh}_t$ is the shift operator on the sphere,
$$ (\operatorname{sh}_tf)(\Theta)=\frac{\Gamma (n/2)}{2\pi^{n/2}(\sin t)^{n-1}}\int_{\Theta\cdot \mu=\cos t}f(\mu)\,dt(\mu),\qquad 0<t<\pi, $$
and its equivalence to the $K$-functional is proved. Special cases of the results established were known from work of Kushnirenko, Butzer, and Johnen, Lofstrom and Peetre, Pawelke, Lizorkin and Nikol'skii, Kalyabin, and others.
Received: 10.02.1992
Bibliographic databases:
UDC: 517.518.13
MSC: Primary 41A50; Secondary 41A27, 33C55
Language: English
Original paper language: Russian
Citation: Kh. P. Rustamov, “On approximation of functions on the sphere”, Russian Acad. Sci. Izv. Math., 43:2 (1994), 311–329
Citation in format AMSBIB
\Bibitem{Rus93}
\by Kh.~P.~Rustamov
\paper On approximation of functions on the sphere
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 43
\issue 2
\pages 311--329
\mathnet{http://mi.mathnet.ru//eng/im842}
\crossref{https://doi.org/10.1070/IM1994v043n02ABEH001566}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1252759}
\zmath{https://zbmath.org/?q=an:0821.41016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..43..311R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QC45400006}
Linking options:
  • https://www.mathnet.ru/eng/im842
  • https://doi.org/10.1070/IM1994v043n02ABEH001566
  • https://www.mathnet.ru/eng/im/v57/i5/p127
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:728
    Russian version PDF:237
    English version PDF:38
    References:102
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024