Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 6, Pages 1257–1274
DOI: https://doi.org/10.1070/IM8412
(Mi im8412)
 

This article is cited in 5 scientific papers (total in 5 papers)

Special Bohr–Sommerfeld Lagrangian submanifolds

N. A. Tyurinabc

a Joint Institute for Nuclear Research, Dubna, Moscow region
b State University – Higher School of Economics
c Moscow State University of Railway Communications
References:
Abstract: We introduce a new notion in symplectic geometry, that of speciality for Lagrangian submanifolds satisfying the Bohr–Sommerfeld condition. We show that it enables one to construct finite-dimensional moduli spaces of special Bohr–Sommerfeld Lagrangian submanifolds with respect to any ample line bundle on an algebraic variety with a Hodge metric regarded as the symplectic form. This construction can be used to study mirror symmetry.
Keywords: symplectic manifold, Lagrangian cycle, Bohr–Sommerfeld condition, prequantization data, algebraic variety, speciality condition.
Funding agency Grant number
Russian Science Foundation 14-21-00053
This work is supported by the Russian Science Foundation under grant no. 14-21-00053.
Received: 19.05.2015
Revised: 29.09.2015
Bibliographic databases:
Document Type: Article
UDC: 512.7+514.7+514.8
MSC: 53D12, 53D37, 53D50
Language: English
Original paper language: Russian
Citation: N. A. Tyurin, “Special Bohr–Sommerfeld Lagrangian submanifolds”, Izv. Math., 80:6 (2016), 1257–1274
Citation in format AMSBIB
\Bibitem{Tyu16}
\by N.~A.~Tyurin
\paper Special Bohr--Sommerfeld Lagrangian submanifolds
\jour Izv. Math.
\yr 2016
\vol 80
\issue 6
\pages 1257--1274
\mathnet{http://mi.mathnet.ru//eng/im8412}
\crossref{https://doi.org/10.1070/IM8412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588823}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80.1257T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393621500013}
\elib{https://elibrary.ru/item.asp?id=27484934}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011654144}
Linking options:
  • https://www.mathnet.ru/eng/im8412
  • https://doi.org/10.1070/IM8412
  • https://www.mathnet.ru/eng/im/v80/i6/p274
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:400
    Russian version PDF:64
    English version PDF:25
    References:55
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024