Abstract:
We introduce a new notion in symplectic geometry, that of speciality for
Lagrangian submanifolds satisfying the Bohr–Sommerfeld condition.
We show that it enables one to construct finite-dimensional
moduli spaces of special Bohr–Sommerfeld Lagrangian submanifolds with respect
to any ample line bundle on an algebraic variety with a Hodge metric
regarded as the symplectic form. This construction can be used to study
mirror symmetry.
This publication is cited in the following 6 articles:
N. A. Tyurin, “Spetsialnaya geometriya Bora–Zommerfelda”, UMN, 80:2(482) (2025), 123–164
N. A. Tyurin, “Special Bohr–Sommerfeld geometry: variations”, Izv. Math., 87:3 (2023), 595–615
N. A. Tyurin, “On the Kählerization of the Moduli Space
of Bohr–Sommerfeld Lagrangian Submanifolds”, Math. Notes, 107:6 (2020), 1038–1039
Tyurin N.A., “Lagrangian Approach to Geometric Quantization”, Geometric Methods in Physics Xxxvii, Trends in Mathematics, ed. Kielanowski P. Odzijewicz A. Previato E., Birkhauser Verlag Ag, 2020, 255–258
N. A. Tyurin, “The moduli space of D-exact Lagrangian submanifolds”, Siberian Math. J., 60:4 (2019), 709–719
N. A. Tyurin, “Special Bohr–Sommerfeld Lagrangian submanifolds of algebraic varieties”, Izv. Math., 82:3 (2018), 612–631