Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 6, Pages 1242–1256
DOI: https://doi.org/10.1070/IM8388
(Mi im8388)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the string equation with a singular weight belonging to the space of multipliers in Sobolev spaces with negative index of smoothness

J. V. Tikhonov, I. A. Sheipak

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study spectral properties of the boundary-value problem
\begin{gather*} -y''-\lambda\rho y=0, \\ y(0)=y(1)=0, \end{gather*}
in the case when the weight $\rho$ belongs to the space $\mathcal M$ of multipliers from the space $\overset{\circ}{W}{}_2^1[0,1]$ to the dual space $\bigl(\overset{\circ}{W}{}_2^1[0,1]\bigr)'$. We obtain a criterion for the generalized derivative (in the sense of distributions) of a piecewise-constant affinely self-similar function to lie in $\mathcal M$. For general weights in this class we show that the spectrum of the problem is discrete and the eigenvalues grow exponentially. The nature of this growth is determined by the parameters of self-similarity. When the parameters of self-similarity reach the boundary of the set where $\rho\in\mathcal M$, the problem exhibits continuous spectrum.
Keywords: self-similar functions, multipliers in Sobolev spaces, string equation, spectral asymptotics.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00705
13-01-12476
Russian Science Foundation 14-11-00754
The results of § 2 were obtained with the support of the Russian Foundation for Basic Research (grants no. 13-01-00705, 13-01-12476). The results of § 3 and § 4 were obtained with the support of the Russian Science Foundation (project no. 14-11-00754).
Received: 13.04.2015
Revised: 30.10.2015
Bibliographic databases:
Document Type: Article
UDC: 517.984+517.518.26
Language: English
Original paper language: Russian
Citation: J. V. Tikhonov, I. A. Sheipak, “On the string equation with a singular weight belonging to the space of multipliers in Sobolev spaces with negative index of smoothness”, Izv. Math., 80:6 (2016), 1242–1256
Citation in format AMSBIB
\Bibitem{TikShe16}
\by J.~V.~Tikhonov, I.~A.~Sheipak
\paper On the string equation with a~singular weight belonging to the space
of multipliers in Sobolev spaces with negative index of smoothness
\jour Izv. Math.
\yr 2016
\vol 80
\issue 6
\pages 1242--1256
\mathnet{http://mi.mathnet.ru//eng/im8388}
\crossref{https://doi.org/10.1070/IM8388}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588822}
\zmath{https://zbmath.org/?q=an:1365.34050}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80.1242T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393621500012}
\elib{https://elibrary.ru/item.asp?id=27484933}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011706144}
Linking options:
  • https://www.mathnet.ru/eng/im8388
  • https://doi.org/10.1070/IM8388
  • https://www.mathnet.ru/eng/im/v80/i6/p258
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:503
    Russian version PDF:101
    English version PDF:21
    References:63
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024