Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 6, Pages 1184–1214
DOI: https://doi.org/10.1070/IM2015v079n06ABEH002777
(Mi im8410)
 

This article is cited in 1 scientific paper (total in 1 paper)

Stable representations of the infinite symmetric group

A. M. Vershikabc, N. I. Nessonovd

a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
d B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
References:
Abstract: We study the notion of a stable unitary representation of a group (or a $\star$-representation of a $\mathbf C^\star$-algebra) with respect to some group of automorphisms of the group (or algebra). In the case of the group of finitary permutations of a countable set we give a complete description, up to quasi-equivalence, of the representations which are stable with respect to the group of all automorphisms of the group. In particular, we solve an old question concerning factor representations associated with Ol'shansky–Okun'kov admissible representations. It is proved that these representations are induced by factor representations of type ${\rm II}_1$ of two-block Young subgroups. The class of stable representations will be the subject of further research.
Keywords: infinite symmetric group, stable representations, factor representations, characters, semidirect product, groupoid model.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00373
13-01-12422-офи_м
The research of the first author was partially supported by the Russian Foundation for Basic Research (grants nos.~14-01-00373 and~13-01-12422-ofi-i), and that of the second author was supported by the grant `Network of Mathematical Research 2013--2015'.
Received: 15.05.2015
Revised: 09.06.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2015, Volume 79, Issue 6, Pages 93–124
DOI: https://doi.org/10.4213/im8410
Bibliographic databases:
Document Type: Article
UDC: 519.12+512.58
MSC: Primary 20C32; Secondary 20B30, 22A25
Language: English
Original paper language: Russian
Citation: A. M. Vershik, N. I. Nessonov, “Stable representations of the infinite symmetric group”, Izv. RAN. Ser. Mat., 79:6 (2015), 93–124; Izv. Math., 79:6 (2015), 1184–1214
Citation in format AMSBIB
\Bibitem{VerNes15}
\by A.~M.~Vershik, N.~I.~Nessonov
\paper Stable representations of the infinite symmetric group
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 6
\pages 93--124
\mathnet{http://mi.mathnet.ru/im8410}
\crossref{https://doi.org/10.4213/im8410}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438466}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79.1184V}
\elib{https://elibrary.ru/item.asp?id=24850003}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 6
\pages 1184--1214
\crossref{https://doi.org/10.1070/IM2015v079n06ABEH002777}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371441400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960480638}
Linking options:
  • https://www.mathnet.ru/eng/im8410
  • https://doi.org/10.1070/IM2015v079n06ABEH002777
  • https://www.mathnet.ru/eng/im/v79/i6/p93
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:485
    Russian version PDF:130
    English version PDF:19
    References:51
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024