Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 3, Pages 463–480
DOI: https://doi.org/10.1070/IM8409
(Mi im8409)
 

This article is cited in 4 scientific papers (total in 4 papers)

Chow groups of intersections of quadrics via homological projective duality and (Jacobians of) non-commutative motives

M. Bernardaraabc, G. Tabuadad

a Université Paul Sabatier, Toulouse
b Université de Toulouse
c Institute de Mathématique de Toulouse
d Department of Mathematics, Massachusetts Institute of Technology
References:
Abstract: Conjectures of Beilinson–Bloch type predict that the low-degree rational Chow groups of intersections of quadrics are one-dimensional. This conjecture was proved by Otwinowska in [1]. By making use of homological projective duality and the recent theory of (Jacobians of) non-commutative motives, we give an alternative proof of this conjecture in the case of a complete intersection of either two quadrics or three odd-dimensional quadrics. Moreover, we prove that in these cases the unique non-trivial algebraic Jacobian is the middle one. As an application, we make use of Vial's work [2], [3] to describe the rational Chow motives of these complete intersections and show that smooth fibrations into such complete intersections over bases $S$ of small dimension satisfy Murre's conjecture (when $\dim (S)\leq 1$), Grothendieck's standard conjecture of Lefschetz type (when $\dim (S)\leq 2$), and Hodge's conjecture (when $\dim(S)\leq 3$).
Keywords: quadrics, homological projective duality, Jacobians, non-commutative motives, non-commutative algebraic geometry.
Funding agency Grant number
National Science Foundation
G. Tabuada was partially supported by the National Science Foundation CAREER Award #1350472 and by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project grant UID/MAT/00297/2013 (Centro de Matemática e Aplicações).
Received: 14.05.2015
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: English
Original paper language: Russian
Citation: M. Bernardara, G. Tabuada, “Chow groups of intersections of quadrics via homological projective duality and (Jacobians of) non-commutative motives”, Izv. Math., 80:3 (2016), 463–480
Citation in format AMSBIB
\Bibitem{BerTab16}
\by M.~Bernardara, G.~Tabuada
\paper Chow groups of intersections of quadrics via homological projective duality
and (Jacobians of) non-commutative motives
\jour Izv. Math.
\yr 2016
\vol 80
\issue 3
\pages 463--480
\mathnet{http://mi.mathnet.ru//eng/im8409}
\crossref{https://doi.org/10.1070/IM8409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507384}
\zmath{https://zbmath.org/?q=an:1350.14005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..463B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384880300001}
\elib{https://elibrary.ru/item.asp?id=26414224}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987667656}
Linking options:
  • https://www.mathnet.ru/eng/im8409
  • https://doi.org/10.1070/IM8409
  • https://www.mathnet.ru/eng/im/v80/i3/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:373
    Russian version PDF:56
    English version PDF:24
    References:53
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024